
Techno-Science Research Journal 10(2) (2022) 57-62

Content list available at ITC

Techno-Science Research Journal
Journal Homepage: http://techno-srj.itc.edu.kh/

57

Integration of RRT* Path Planning with Trajectory Tracking for Wheeled Mobile
Robot

Sotheara Oum1*, Sarot Srang1, Phayuth Yonrith1

1 Department of Industrial and Mechanical Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86,
Phnom Penh, Cambodia

Received: 11 August 2022; Accepted: 18 October 2022; Available online: December 2022

Abstract: Mobile robots have been around since the late 1960s. This kind of technology has caught the attention of many researchers
since then. In the last decade, the applications of mobile robots are being applied in various sectors unleashing more benefits of
automation and robotics to be captured to their maximum potential by mankind. As the tasks are getting more complex, it requires
the mobile robots to be more advanced and autonomous. That is when motion planning comes into play. There are many types of
wheeled mobile robots, one of which is called differential-drive. Although this type of robot has the benefits of simplicity over other
types, it also has one downside, as it involves non-holonomic constraints. The problem of non-holonomic wheeled mobile robots in
terms of path planning and tracking control are the big challenges for autonomous robot researchers throughout these years. Many
approaches have been proposed and confirmed to have their own advantages and disadvantages in certain circumstances. This paper
presents an integrated path planning and trajectory tracking control method for wheeled mobile robots allowing the robots to find
the lowest-cost path while avoiding obstacles within a short computational time and move towards their goal by combining the RRT*
path planning with Backstepping control. The performance of this integrated model is validated and implemented onto a two-wheel
mobile robot which is a non-holonomic system subject to known static environmental obstacles. Assumptions and details on the test
result are also described.

Keywords: Non-holonomic mobile robot; Path Planning; RRT* Algorithm; Trajectory Tracking; Backstepping Control

1. INTRODUCTION1

At present, autonomous mobile robots are being widely
used for many applications ranging from household chores,
delivery, defense, and planetary exploration. This type of robot
requires motion planning, which in this work, can be considered
as one word that describes the combination of two tasks; path
planning and trajectory tracking control.

For the robot to navigate from one point to any desired
point autonomously, it is required one crucial element which is
a path that connects from the robot’s starting point to the desired
goal point. A robot that has been implemented with a path
planning algorithm has the ability to determine its path entirely
by itself. A variety of path planning algorithms have been
proposed and tested in various situations. Each of them has been
to be effective in a certain circumstance.

When choosing the right path planning algorithm, there is
no algorithm can be considered better than others in all

* Corresponding author: Sotheara Oum
E-mail: sotheara_oum@gscitc.edu.kh; Tel: +855-11 639 625

circumstances. The best algorithm depends on which factors are
given more focus on, such as the type of the robot and the
computing constraints, namely static/holonomic and
dynamic/non-holonomic systems.

In the real environment, most mobile robots have size
constraints and therefore use small microcontrollers to execute
programs. These microcontrollers have limited computational
ability. Among all other algorithms, the RRT*, shorts for
Rapidly-exploring Random Tree Star, is a simple and
computationally cost-effective planning algorithm suitable for
dynamic environments [1], although it also works competently
in static environments. The RRT* algorithm also produces
lower-cost paths over its predecessor, the RRT [1]. In addition,
combining this algorithm with a tracking controller create a
motion planning that can be applied to almost any wheeled
system because of its ability to cope with non-holonomic
constraints [2,3]. Differential-drive robot has constraint on its
kinematics which is call non-holonomic constraint. The robot

 Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62

58

can only move forward and backward, it cannot turn sideway. If
the path has many (desired) turning points next to each other, the
robot will not be able to reach all the desired points as it needs
to move to some distance about a radius (ICC) to change its
orientation.

To allow the robot to follow the path generated by the path
planning algorithm, it is required a trajectory tracking control
method. There are many control algorithms available.
Backstepping control is a nonlinear control technique that can
deal with non-holonomic constraints, minimizing the error
between the actual trajectory and the desired to zero [4]. The
Backstepping is chosen because this approach is recommended
owing to the fact that its structure is straightforward, and it is
appropriate for applications that have small tracking errors. It
was determined that the strategy was successful in solving the
trajectory tracking control issue of differential-drive wheeled
mobile robot. And lastly, the integration of these 2 methods is
also needed.

This paper demonstrates the integration of the RRT*
algorithm with Backstepping control, where the coordinates of
the nodes on the path generated by RRT* are then used as inputs
into the trajectory tracking control model using Backstepping
controller. Simulation in MATLAB Simulink of a differential-
drive mobile robot, assuming that the robot is operating in a 2D
static environment is performed and has been implemented onto
real hardware testing.

2. METHODOLOGY

The integrated framework can be compactly described as
follows. First, in order to generate a path, the RRT* generates
random nodes in the configuration space and connects them to
the initialized tree until the goal is reached. The configuration of
the coordinate x and y of each waypoint on the generated path
are then taken as the reference/desired position of the robot 𝑞! =
[𝑥!	𝑦!	𝜃!]", where 𝜃! is calculated by 𝜃! = 𝑎𝑡𝑎𝑛2(#!"#$#!

%!"#$%!
).

This 3xn matrix is then employed as the input to the trajectory
generation function to calculate the velocities required for the
tracking control model. The backstepping controller minimizes
the error between the desired and actual robot velocities and
sends commands to the robot model, thus the robot moves
towards each desired point of the reference trajectory until it
reaches the final point. Fig. 1 illustrates this system block
diagram. Details on the RRT* algorithm, the kinematic model of
the robot, and Backstepping control will be discussed in the
sections below.

Fig. 1. System architecture

2.1. Path Planning: RRT*

RRT* is a random sampling-based planning algorithm. The
two commonly used methods of planning are grid-based and
sampling-based planning. A grid-based algorithm is particularly
effective at solving low-dimensional topographical problems.
The sampling-based algorithm, on the other hand, excels at
solving high-dimensional problems.

The way this algorithm works can be divided into 4 main
steps. Step 1: the tree is initialized at the start point/node 𝑞&'()'
of the robot. Step 2: a random node 𝑞)(*! is randomly generated
inside the configuration space. Step 3: the algorithm tries to
connect the nearest node 𝑞*+()+&' on the tree to the new
generated node while making sure there is no collision with
obstacles as shown in Fig. 2. Step 4: after being connected to the
tree, the new node 𝑞*+, is being used as a substitute to the
previous parent node(s) of the neighbor node(s) to compare their
original cost to the new cost (when those nodes take the new
node as their parent node). If the new cost is lower than the
original cost, the neighbor node(s) will remove their branch(es)
from the previous parent node(s) to connect with the new node
instead and the tree will be re-shaped. Step 2, 3 and 4 will keep
repeating until the goal is reached or the algorithm has generated
random nodes as many as the number of nodes is set.

The process in step 3 and 4 improve the path quality.
However, they can make convergence towards the goal slow as
number of nodes in the tree increases [5]. In step 3, when a
random vertex 𝑞)(*! is generated, the RRT* will first tries to
connect it with the tree by checking the distance of all nodes in
the tree and select the one with the shortest distance to branch
out (steer) towards 𝑞)(*!. If the distance of 𝑞)(*! is bigger than
the stepsize EPS, a new node 𝑞*+, will be added to the
configuration space.

Fig. 2. Tree branching out towards 𝑞!"#$ [6]

After the 𝑞*+, is added, the algorithm selects the best
nearest neighbor as the parent for this new node. The process of
choosing the parent node 𝑞-()+*' is as follows. First it considers
all the nearby nodes 𝑞*+() within a radius. The node with the
lowest cost to reach the 𝑞*+, will be selected as the parent as
shown in Figs. 3a and b. This process in step 3 can be called
finding parent, and the process in step 4 is called rewiring.

 Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62

59

In step 4, after the 𝑞*+, is added to the tree, the RRT*
compares the cost of these 𝑞*+() back to the start point with the
new cost of the RRT* uses this new node added to the tree to
reconnect the tree. If the initial cost of the nearby nodes within a
radius is higher (from start node to them) compares to when they
connect to the 𝑞*+,, the RRT* removes those nodes from their
parent nodes and select this new added node as their parent node
instead. Hence, the tree is rewired (see Figs. 3c and d).

Fig. 3. New node connecting and rewiring process [5]

The cost of each node can be obtained by calculating the
distance from each node to the start node, given the cost of
start/initial node is 0 (zero). Knowing the position of each node,
the distance can be calculated using Pythagorean theorem.

2.2. Robot Kinematic Model

The differential-drive robot is a type of mobile robot that is
commonly used in both research and practical applications,
although they have one disadvantage that involves non-
holonomic constraints meaning that the controllable degree of
freedom of their wheels is less than the total degree of freedom.
In simple words, they are not able to move sideways like the
mechanum or omnidirectional wheels mobile robots.

A robot has two frames; one is attached to its body which
is called body frame and another one is the global coordinate
frame as shown in fig. 4. The configuration of the robot in global
frame is denoted by: 𝑞 = [𝑥 𝑦 𝜃]"	which yields the velocity
vector in global frame as: �̇� = [�̇� �̇� �̇�]".

The forward kinematic equation of the robot can be
expressed as:

0
�̇�
�̇�
�̇�
1 = 	𝐽(𝑞)𝑉(𝑡) 	= 0

𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

1 :𝑣𝜔= (Eq. 1)

where:
𝑣 = 	 .$/.%

0
 is linear velocity of the robot in robot frame (m/s)

𝜔 = .$$.%
1

 is angular velocity of the robot in the robot frame
(rad/s)

𝛳 is the rotation angle of the robot frame with respect to global
frame (rad)
𝐽 is Jacobian matrix transform

Fig. 4. Differential-drive wheel mobile robot in 2D coordinate

2.3. Trajectory Tracking

Backstepping controller reduces the error pose between the
desired and robot trajectories to zero by taking the desired linear
and angular velocities of the robot, and the pose error vector as
the inputs to calculate the linear velocity 𝑣2 and the angular
velocity 𝜔2 required to tackle the error. The Backstepping
control law [4] is given as:

:
𝑣2
𝜔2= = ?

𝑘3𝑒% + 𝑣!𝑐𝑜𝑠𝑒4
𝜔! + 𝑘0𝑣!𝑒# + 𝑘5𝑣!𝑠𝑖𝑛𝑒4

C (Eq. 2)

where k is positive constant and e is error pose in global frame
between desired and robot trajectory which can be calculated by:

0
𝑒%
𝑒#
𝑒4
1 = 0

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

1 0
𝑥! − 𝑥2
𝑦! − 𝑦2
𝜃! − 𝜃2

1 (Eq. 3)

where [𝑥! 𝑦! 𝜃!]" is desired pose in global frame, and
[𝑥2 𝑦2 𝜃2]"		 is controlled pose in global frame.

 Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62

60

3. RESULTS AND DISCUSSION

This integrated method has been validated through
numerical simulation in MATLAB Simulink and also
implemented in hardware testing using a differential-drive
mobile robot.

Many test scenarios have been performed, one of which is
when the robot is steering in a 6	𝑚 × 6	𝑚 lobby as shown in Fig.
6 with initial configuration 𝑞6*6' = [0 0 0]" and the final
goal 𝑞+*! = [4.8 4.2 0]" .

With 1200 number of nodes, eps size 0.2, the RRT*
algorithm generates a path that avoid obstacles in the
environment as shown in Fig. 5. The green rectangles area are
obstacles that the robot cannot cross over. The red line is the path
generated by RRT* algorithm.

Be noted that the path generated each time the model is
executed is not always the same since the RRT* is a random
sampling-based planning algorithm.

Fig. 5. Map and path generated in RRT*

The obstacles size and position in Figs. 5 and 6 are slightly

different because the RRT* algorithm does not take robot size
into consideration, meaning that it only focuses on the robot
center, therefore, the obstacles size in the planning algorithm
needs to be offset according to the real robot size to fit in the real
practice.

The robot’s maximum velocity due to hardware constraint
is equal v = 0.88 m/s. Different velocity values have been tested
with the robot. Fig. 7. shows the comparison between the desired
trajectory and the controlled robot trajectory from the
experiment with linear velocity v = 0.2 m/s and 0.5 m/s
respectively.

Fig. 6. Real test setup

Fig. 7. Desired and actual trajectories of the robot (v = 0.2)

The results show that the shape of the desired and actual
path is very similar although there is noticeable error in position.
The two graphs in Fig. 9 illustrates the position error at each
timestep. It can be seen that for v = 0.2 m/s, at the final goal, the
error is 0.2 m in the y-axis and 0 m in the x-axis.

However, the error in actual robot position can significantly
differ from the data captures by encoder when the velocities of
the robot increase, which is caused by wheel slippery. Fig. 10
shows the actual position of the robot operating at velocity v =
0.2 m/s. The error in x-axis is 0.15 m and y-axis is 0.25 m which
is slightly different from the error as shown in Fig. 9.

The actual velocity graphs are bumpy since they are
calculated using numerical derivative. The actual velocity cannot
track the desired velocity when it suddenly jumps due to the

 Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62

61

switch from a current reached point to a next one. However, the
convergence still can be achieved when the desired velocity
becomes constant. This means that the control algorithm is
robust although the tracking performance is not very accurate for
higher maximum linear velocity

Fig. 8. Desired and actual trajectories (v = 0.5)

Fig. 9. Position error between desired and actual trajectory

Fig. 10. Robot’s actual position

Fig. 11. Angle of rotation of the robot along the path

 Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62

62

Fig. 12. Desired and actual linear velocity

Fig. 13. Desired and actual angular velocity

4. CONCLUSION

In conclusion, the implementation of RRT* algorithm
combining with Backstepping controller, a target tracking
control technique, onto a non-holonomic mobile robot is
presented. The results from many hardware testing show that this
path planning technique works adequately with the
Backstepping controller, allowing the robot to reach the goal
point autonomously with position error increasing in accordance
with higher value of desired maximum linear velocity. In
addition, it also proved that this approach can be employed in

development of service/delivery robot operating in a static
environment. To further achieve a complete autonomous system
in future work, mapping, localization and object detection should
be included to allow the robot to generate a map of surrounding
in each real-time execution.

ACKNOWLEDGMENTS

The authors would like to thank members and alumni of
Dynamics and Control Laboratory who have been offering their
kind help and support throughout this work.

REFERENCES

[1] Connell, D., & La, H. M. (2017, October). Dynamic path
planning and replanning for mobile robots using RRT.
In 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC) (pp. 1429-1434). IEEE.

[2] Li, J., Liu, S., Zhang, B. and Zhang, X. (2014). RRT-A
Motion planning algorithm for non-holonomic mobile
robot. In 2014 Proceedings of the SICE Annual Conference
(SICE) (pp. 1833-1838).

[3] LaValle, S. M. (1998). Rapidly-exploring random trees: A
new tool for path planning.

[4] Zidani, G., Drid, S., Chrifi-Alaoui, L., Benmakhlouf, A., &
Chaouch, S. (2015, April). Backstepping controller for a
wheeled mobile robot. In 2015 4th International
Conference on Systems and Control (ICSC) (pp. 443-448).
IEEE.

[5] Noreen, I., Khan, A., & Habib, Z. (2016). A comparison of
RRT, RRT* and RRT*-smart path planning
algorithms. International Journal of Computer Science and
Network Security (IJCSNS), 16(10), 20.

[6] Jayasree, K. R., Jayasree, P. R., & Vivek, A. (2017, April).
Dynamic target tracking using a four wheeled mobile robot
with optimal path planning technique. In 2017
International Conference on Circuit, Power and
Computing Technologies (ICCPCT) (pp. 1-6). IEEE.

	Cover-Vol 10-Issue 2-2022
	Editorial and Contents-Vol 10-Issue 2-2022
	09_03_Assessment_of_the_Impact_of_Climate_Change_on_Hydrological
	09_10_Lithofacies_and_Petrology_of_Sandstones_from_Outcrops_at_Kulen
	10_06_Twin Bridge Hydraulics Analysis using HEC-RAS Model
	10_13_Optimization_of_Extraction_Conditions_for_Phenolic_Compounds
	10_17_Feasibility_Study_of_Recycled_Waste_Plastic_Application_in
	10_19_Effect_of_Pretreatment_on_Extractions_of_Essential_Oil_from
	10_20_Effect_of_Pretreatment_on_Extractions_of_Essential_Oil_from
	10_23_Security_Enhancement_of_Kubernetes_Management_in_the_Blockchain
	10_24_Integration_of_RRT__Path_Planning_with_Trajectory_Tracking
	10_25_Identification_of_Pesticide_Contamination_in_Water_Sources
	Back-Vol 10-Issue 2-2022

