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Abstract: Mobile robots have been around since the late 1960s. This kind of technology has caught the attention of many researchers 
since then. In the last decade, the applications of mobile robots are being applied in various sectors unleashing more benefits of 
automation and robotics to be captured to their maximum potential by mankind. As the tasks are getting more complex, it requires 
the mobile robots to be more advanced and autonomous. That is when motion planning comes into play. There are many types of 
wheeled mobile robots, one of which is called differential-drive. Although this type of robot has the benefits of simplicity over other 
types, it also has one downside, as it involves non-holonomic constraints. The problem of non-holonomic wheeled mobile robots in 
terms of path planning and tracking control are the big challenges for autonomous robot researchers throughout these years. Many 
approaches have been proposed and confirmed to have their own advantages and disadvantages in certain circumstances. This paper 
presents an integrated path planning and trajectory tracking control method for wheeled mobile robots allowing the robots to find 
the lowest-cost path while avoiding obstacles within a short computational time and move towards their goal by combining the RRT* 
path planning with Backstepping control. The performance of this integrated model is validated and implemented onto a two-wheel 
mobile robot which is a non-holonomic system subject to known static environmental obstacles. Assumptions and details on the test 
result are also described. 
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1. INTRODUCTION1 

At present, autonomous mobile robots are being widely 
used for many applications ranging from household chores, 
delivery, defense, and planetary exploration. This type of robot 
requires motion planning, which in this work, can be considered 
as one word that describes the combination of two tasks; path 
planning and trajectory tracking control. 

For the robot to navigate from one point to any desired 
point autonomously, it is required one crucial element which is 
a path that connects from the robot’s starting point to the desired 
goal point. A robot that has been implemented with a path 
planning algorithm has the ability to determine its path entirely 
by itself. A variety of path planning algorithms have been 
proposed and tested in various situations. Each of them has been 
to be effective in a certain circumstance. 

When choosing the right path planning algorithm, there is 
no algorithm can be considered better than others in all 
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circumstances. The best algorithm depends on which factors are 
given more focus on, such as the type of the robot and the 
computing constraints, namely static/holonomic and 
dynamic/non-holonomic systems.  

In the real environment, most mobile robots have size 
constraints and therefore use small microcontrollers to execute 
programs. These microcontrollers have limited computational 
ability. Among all other algorithms, the RRT*, shorts for 
Rapidly-exploring Random Tree Star, is a simple and 
computationally cost-effective planning algorithm suitable for 
dynamic environments [1], although it also works competently 
in static environments. The RRT* algorithm also produces 
lower-cost paths over its predecessor, the RRT [1]. In addition, 
combining this algorithm with a tracking controller create a 
motion planning that can be applied to almost any wheeled 
system because of its ability to cope with non-holonomic 
constraints [2,3]. Differential-drive robot has constraint on its 
kinematics which is call non-holonomic constraint. The robot 



                                                                                       Oum et al./Techno-Science Research Journal 10(2) (2022) 57-62 

58 
 

can only move forward and backward, it cannot turn sideway. If 
the path has many (desired) turning points next to each other, the 
robot will not be able to reach all the desired points as it needs 
to move to some distance about a radius (ICC) to change its 
orientation.  

To allow the robot to follow the path generated by the path 
planning algorithm, it is required a trajectory tracking control 
method. There are many control algorithms available. 
Backstepping control is a nonlinear control technique that can 
deal with non-holonomic constraints, minimizing the error 
between the actual trajectory and the desired to zero [4]. The 
Backstepping is chosen because this approach is recommended 
owing to the fact that its structure is straightforward, and it is 
appropriate for applications that have small tracking errors. It 
was determined that the strategy was successful in solving the 
trajectory tracking control issue of differential-drive wheeled 
mobile robot. And lastly, the integration of these 2 methods is 
also needed. 

This paper demonstrates the integration of the RRT* 
algorithm with Backstepping control, where the coordinates of 
the nodes on the path generated by RRT* are then used as inputs 
into the trajectory tracking control model using Backstepping 
controller. Simulation in MATLAB Simulink of a differential-
drive mobile robot, assuming that the robot is operating in a 2D 
static environment is performed and has been implemented onto 
real hardware testing.  

2. METHODOLOGY 

The integrated framework can be compactly described as 
follows. First, in order to generate a path, the RRT* generates 
random nodes in the configuration space and connects them to 
the initialized tree until the goal is reached. The configuration of 
the coordinate x and y of each waypoint on the generated path 
are then taken as the reference/desired position of the robot 𝑞! =
[𝑥!	𝑦!	𝜃!]", where 𝜃! is calculated by 𝜃! = 𝑎𝑡𝑎𝑛2(#!"#$#!

%!"#$%!
). 

This 3xn matrix is then employed as the input to the trajectory 
generation function to calculate the velocities required for the 
tracking control model. The backstepping controller minimizes 
the error between the desired and actual robot velocities and 
sends commands to the robot model, thus the robot moves 
towards each desired point of the reference trajectory until it 
reaches the final point. Fig. 1 illustrates this system block 
diagram. Details on the RRT* algorithm, the kinematic model of 
the robot, and Backstepping control will be discussed in the 
sections below. 

 

 
Fig. 1. System architecture 

2.1.  Path Planning: RRT* 

RRT* is a random sampling-based planning algorithm. The 
two commonly used methods of planning are grid-based and 
sampling-based planning. A grid-based algorithm is particularly 
effective at solving low-dimensional topographical problems. 
The sampling-based algorithm, on the other hand, excels at 
solving high-dimensional problems. 

The way this algorithm works can be divided into 4 main 
steps. Step 1: the tree is initialized at the start point/node 𝑞&'()' 
of the robot. Step 2: a random node 𝑞)(*!  is randomly generated 
inside the configuration space. Step 3: the algorithm tries to 
connect the nearest node 𝑞*+()+&' on the tree to the new 
generated node while making sure there is no collision with 
obstacles as shown in Fig. 2. Step 4: after being connected to the 
tree, the new node 𝑞*+, is being used as a substitute to the 
previous parent node(s) of the neighbor node(s) to compare their 
original cost to the new cost (when those nodes take the new 
node as their parent node). If the new cost is lower than the 
original cost, the neighbor node(s) will remove their branch(es) 
from the previous parent node(s) to connect with the new node 
instead and the tree will be re-shaped. Step 2, 3 and 4 will keep 
repeating until the goal is reached or the algorithm has generated 
random nodes as many as the number of nodes is set. 

The process in step 3 and 4 improve the path quality. 
However, they can make convergence towards the goal slow as 
number of nodes in the tree increases [5]. In step 3, when a 
random vertex 𝑞)(*! is generated, the RRT* will first tries to 
connect it with the tree by checking the distance of all nodes in 
the tree and select the one with the shortest distance to branch 
out (steer) towards 𝑞)(*!. If the distance of 𝑞)(*! is bigger than 
the stepsize EPS, a new node 𝑞*+, will be added to the 
configuration space.  

 
Fig. 2. Tree branching out towards 𝑞!"#$ [6]  

After the 𝑞*+, is added, the algorithm selects the best 
nearest neighbor as the parent for this new node. The process of 
choosing the parent node 𝑞-()+*' is as follows. First it considers 
all the nearby nodes 𝑞*+() within a radius. The node with the 
lowest cost to reach the 𝑞*+, will be selected as the parent as 
shown in Figs. 3a and b. This process in step 3 can be called 
finding parent, and the process in step 4 is called rewiring. 
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In step 4, after the 𝑞*+, is added to the tree, the RRT* 
compares the cost of these 𝑞*+() back to the start point with the 
new cost of the RRT* uses this new node added to the tree to 
reconnect the tree. If the initial cost of the nearby nodes within a 
radius is higher (from start node to them) compares to when they 
connect to the 𝑞*+,, the RRT* removes those nodes from their 
parent nodes and select this new added node as their parent node 
instead. Hence, the tree is rewired (see Figs. 3c and d). 

 
Fig. 3. New node connecting and rewiring process [5] 

The cost of each node can be obtained by calculating the 
distance from each node to the start node, given the cost of 
start/initial node is 0 (zero). Knowing the position of each node, 
the distance can be calculated using Pythagorean theorem. 

2.2.   Robot Kinematic Model 

The differential-drive robot is a type of mobile robot that is 
commonly used in both research and practical applications, 
although they have one disadvantage that involves non-
holonomic constraints meaning that the controllable degree of 
freedom of their wheels is less than the total degree of freedom. 
In simple words, they are not able to move sideways like the 
mechanum or omnidirectional wheels mobile robots. 

A robot has two frames; one is attached to its body which 
is called body frame and another one is the global coordinate 
frame as shown in fig. 4. The configuration of the robot in global 
frame is denoted by:  𝑞 = [𝑥 𝑦 𝜃]"	which yields the velocity 
vector in global frame as: �̇� = [�̇� �̇� �̇�]". 

The forward kinematic equation of the robot can be 
expressed as: 

 

0
�̇�
�̇�
�̇�
1 = 	𝐽(𝑞)𝑉(𝑡) 	= 0

𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

1 :𝑣𝜔=                        (Eq. 1) 

 
where:  
𝑣 = 	 .$/.%

0
  is linear velocity of the robot in robot frame (m/s) 

𝜔 = .$$.%
1

 is angular velocity of the robot in the robot frame 
(rad/s) 

𝛳 is the rotation angle of the robot frame with respect to global 
frame (rad) 
𝐽 is Jacobian matrix transform 

 

 
 
Fig. 4. Differential-drive wheel mobile robot in 2D coordinate 

2.3.  Trajectory Tracking 

Backstepping controller reduces the error pose between the 
desired and robot trajectories to zero by taking the desired linear 
and angular velocities of the robot, and the pose error vector as 
the inputs to calculate the linear velocity 𝑣2 and the angular 
velocity 𝜔2 required to tackle the error. The Backstepping 
control law [4] is given as: 

 

:
𝑣2
𝜔2= = ?

𝑘3𝑒% + 𝑣!𝑐𝑜𝑠𝑒4
𝜔! + 𝑘0𝑣!𝑒# + 𝑘5𝑣!𝑠𝑖𝑛𝑒4

C                         (Eq. 2)                           

 
where k  is positive constant and  e is error pose in global frame 
between desired and robot trajectory which can be calculated by: 
 

0
𝑒%
𝑒#
𝑒4
1 = 0

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

1 0
𝑥! − 𝑥2
𝑦! − 𝑦2
𝜃! − 𝜃2

1                        (Eq. 3) 

 
where [𝑥! 𝑦! 𝜃!]"  is desired pose in global frame, and 
[𝑥2 𝑦2 𝜃2]"		 is controlled pose in global frame. 
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3. RESULTS AND DISCUSSION 

This integrated method has been validated through 
numerical simulation in MATLAB Simulink and also 
implemented in hardware testing using a differential-drive 
mobile robot.  

Many test scenarios have been performed, one of which is 
when the robot is steering in a 6	𝑚 × 6	𝑚 lobby as shown in Fig. 
6 with initial configuration 𝑞6*6' = [0 0 0]" and the final 
goal 𝑞+*! = [4.8 4.2 0]" .  

With 1200 number of nodes, eps size 0.2, the RRT* 
algorithm generates a path that avoid obstacles in the 
environment as shown in Fig. 5. The green rectangles area are 
obstacles that the robot cannot cross over. The red line is the path 
generated by RRT* algorithm.  

Be noted that the path generated each time the model is 
executed is not always the same since the RRT* is a random 
sampling-based planning algorithm.  

 

 
Fig. 5. Map and path generated in RRT* 

 
The obstacles size and position in Figs. 5 and 6 are slightly 

different because the RRT* algorithm does not take robot size 
into consideration, meaning that it only focuses on the robot 
center, therefore, the obstacles size in the planning algorithm 
needs to be offset according to the real robot size to fit in the real 
practice. 

The robot’s maximum velocity due to hardware constraint 
is equal v = 0.88 m/s. Different velocity values have been tested 
with the robot. Fig. 7. shows the comparison between the desired 
trajectory and the controlled robot trajectory from the 
experiment with linear velocity v = 0.2 m/s and 0.5 m/s 
respectively.  

 

 

Fig. 6. Real test setup 

 
Fig. 7. Desired and actual trajectories of the robot (v = 0.2) 
 

The results show that the shape of the desired and actual 
path is very similar although there is noticeable error in position. 
The two graphs in Fig. 9 illustrates the position error at each 
timestep. It can be seen that for v = 0.2 m/s, at the final goal, the 
error is 0.2 m in the y-axis and 0 m in the x-axis. 

However, the error in actual robot position can significantly 
differ from the data captures by encoder when the velocities of 
the robot increase, which is caused by wheel slippery. Fig. 10 
shows the actual position of the robot operating at velocity v = 
0.2 m/s. The error in x-axis is 0.15 m and y-axis is 0.25 m which 
is slightly different from the error as shown in Fig. 9.  

The actual velocity graphs are bumpy since they are 
calculated using numerical derivative. The actual velocity cannot 
track the desired velocity when it suddenly jumps due to the 
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switch from a current reached point to a next one. However, the 
convergence still can be achieved when the desired velocity 
becomes constant. This means that the control algorithm is 
robust although the tracking performance is not very accurate for 
higher maximum linear velocity 
 

 

Fig. 8. Desired and actual trajectories (v = 0.5) 

 

 
Fig. 9. Position error between desired and actual trajectory 

 

 
 

Fig. 10. Robot’s actual position 
 
 

 
 
Fig. 11. Angle of rotation of the robot along the path 
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Fig. 12. Desired and actual linear velocity 
 

 
 
Fig. 13. Desired and actual angular velocity 

4. CONCLUSION 

In conclusion, the implementation of RRT* algorithm 
combining with Backstepping controller, a target tracking 
control technique, onto a non-holonomic mobile robot is 
presented. The results from many hardware testing show that this 
path planning technique works adequately with the 
Backstepping controller, allowing the robot to reach the goal 
point autonomously with position error increasing in accordance 
with higher value of desired maximum linear velocity. In 
addition, it also proved that  this approach can be employed in 

development of service/delivery robot operating in a static 
environment. To further achieve a complete autonomous system 
in future work, mapping, localization and object detection should 
be included to allow the robot to generate a map of surrounding 
in each real-time execution. 
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