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Abstract: Spatial distribution of soil data is a current issue with which most of areas are being faced. Imba-Numa watershed, Japan, is also
one among those areas which lack of spatial data of soil parameters. This study aims to generate spatially distribution of soil properties
which consist of soil particles, total carbon, total nitrogen and Bulk density in Imba-Numa watershed. Three geostatistical interpolation
methods: Ordinary Kriging (OK), Universal Kriging (UK), and Inverse Distance Weighting (IDW), were applied to interpolate soil
properties into spatially continuous data. To evaluate the performance of methods to obtain the best method which has the minimum error,
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Error Percentage (MEPE) were used. Cross Validation
comparison was also used to compare and validate method. The results show that Universal Kriging with Hole-effect Model is the best
method to interpolate soil parameters (except Bulk density) in Imba-Numa watershed. Due to limitation of available data, the interpolated
maps could not perfectly provide the satisfactory map and consists of error, but it is still acceptable.
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There are a lot of soil information and maps of soil
which are not completed, or there is too much blank area.
Widely used soil models essentially yield empirical result

1. INTRODUCTION

The paper map, as a product of a traditional soil mapping,
appears to be increasingly irrelevant to many users and does
not have a market with land managers and policy makers at
different scale (Omran, 2008). While the traditional role of
soil survey is diminishing, the need of soil information
becomes more important in terms of sustainable land
management. Many policies required good soil information
and rapid answers. We do not have enough and accurate soil
data to contribute to variety of application fields from the
increasing demand.

* Coresponding authors:
E-mail: trysophal001@gmail.com

due to lack of good soil data (Stroosnijder, 2005). Updating
soil inventories is one of the main fields where new
technologies should facilitate data sampling and acquisition.
New high quality soil data is needed to complement existing
database and to provide spatial detail required by the users.
The failure to evaluate map accuracy due to the consistency
between predicted and observed attribute values for any
given location within the mapped region is a recurring
limitation. At present there is no consensus regarding best or
most approaches to map soil properties. It was known little
about performance and accuracy of different interpolation
methods applied to soil properties.

Geostatistics has played an increasing role in both
groundwater  hydrology and  petroleum  reservoir
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characterization and modeling, driven mainly by the
recognition that heterogeneity in petrophysical properties
dominate groundwater flow, solute transport, and multiphase
migration in the subsurface. Geostatistics, by transforming a
spare data set from the field into a spatial map, offers a
means to recreate heterogeneity to be incorporated into
numerical flow and transport modeling. On the other hand,
by transforming a spare data set into multiple spatial maps, it
offers a means of evaluating the uncertainties on modeling
due to the uncertain nature of each map.

Geostatistics often faces interpolation and estimation
problems during analyzing spare data from field
observations. Geostatistic is an invaluable tool that can be
used to characterize spatial or temporal phenomena.
Geostatistics originated from the mining and petroleum
industries, starting with the work by Danie Krige in the
1950’s and was further developed by Georges Matheron in
the 1960’s. In both industries, geostatistics is successfully
applied to solve cases where decision concerning expensive
operations are since been extended to many other fields in or
related in space. The quality control is not part of standard
interpolation methods. Furthermore, standard interpolation
methods do not take into account the intrinsic properties of
the interpolated phenomena as they only take account of the
position of the measurement points. Geostatistics uses a
probabilistic  model to overcome these problems.
Geostatistics was originally used in prospecting where it was
necessary to estimate the potential of a deposit as accurately
as possible using spatially dispersed sampling.

Interpolation can be undertaken utilizing simple
mathematical models (e.g., inverse distance weighting
(IDW), splines and Thiessen polygon), or other complex
models (e.g., geostatistical method, such as kriging)
(Negreiros et al., 2011). The review of comparative studies
of interpolation methods applied to soil properties
demonstrates that the selection of method can significantly
influence map accuracy. Ordinary Kriging (OK), Universal
Kriging (UK) and Inverse Distance Weighting (IDW) are
ways to interpolate soil properties. Past applications of these
methods have given a range of results which have not
always been consistent.

The main objectives of this study are to analyze of soil
parameters in Imba-Numa watershed by using statistical
analysis, compare the performance of geostatistical
interpolation methods (OK, UK and IDW) and to interpolate
soil properties (soil particles, Bulk density, total carbon and
total nitrogen) for future use.

2. METHODOLOGY
2.1 Study area

Figures This study was conducted on the Imba-Numa
watershed, located in Chiba Prefecture, 30-50 km eastof
Tokyo metropolitan area, Japan. The surface of the study

area is 11002.24 ha with an altitude ranging from 8 to 90
meters. The population in this basin is around 767,000
people, which accounts for about 12 percent of the total
population of the prefecture. It is the third biggest population
basin after Biwa basin and Kasumigaura basin. Imba-Numa
Lake is a former lagoon located in Imba basin. Rivers such
as the Kashimagawa River, Shinkawa River, and
Tagurigawa River flow into the lake, resulting in a
catchment of 541.1 km? Valuable animals and plants inhabit
the environs of the many springs that appear in the rivers
feeding the lake. This lake is divided in to two parts;
Northern Imba-Numa Lake and Western Imba-Numa Lake.
The original shape of Imba-Numa Lake is like “W” and
larger than the size of the lake nowadays. Until the 1960’s, it
was 25.8 km?, but as a result of land reclamation after the
war (World War 1), the lake is divided into Northern and
Western Imba-Numa Lake which are connected by a narrow
waterway, and the area have been reduced to less than half.
Now its size is 11.55 km? with a mean depth of 1.7 m.
However, it is still the largest lake in Chiba prefecture. Both
Northern and Western Imba-Numa Lake are linked via
central drainage and Imba waterway.

Lake Inba*numa
wa

tershed

Western part of Imba-Numa lake Northern part of Imba-Numa lake

Figure 1. Study area, Imba-Numa watershed.
2.2 Soil sample and analysis
2.2.1 Soil sample data

Soil data from Japan Soil Association was used within this
study. The purpose of this soil data investigation is to
support to conservation in agriculture. This data consists of
soil parameters including soil particles (percentage of clay,
silt and sand), Total Carbon, Total Nitrogen and Bulk
density.
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Figure 2. Map of available soil sample point data.
2.2.2 Data transformation

Unimodal and nearly symmetric distributions have many
practical advantages. A single number can be used to
represent the central value in the batch, because the mode,
median, and arithmetic mean are practically the same.
Furthermore, histogram approximates a bell-shaped normal
distribution, the standard deviation is about three-fourths the
interquartile range, so that it does not matter whether we use
the standard deviation or the interquartile range to measure
the spread.

To guarantee that soil data follows by normal
distribution, data transformation method was used. A
suitable model can be fitted to the transformed data making
a distribution of the original data available by inverting a
function of random wvariable. In this study, power
transformation method was applied in order to transform soil
parameters such as clay percentage, total carbon and Bulk
density to be closer to Normal distribution. The power
transform is defined as follows for non-negative data:

[(Z*-D/k k>0 .
~|In@@) k=0 @

where k is a real valued parameter.
2.3 Deterministic methods

Ordinary Kriging (OK), Universal Kriging (UK), and
Inverse Distance Weighting (IDW) are three interpolation
method which were used to interpolate soil properties in this
study. IDW interpolation implements the assumption that
things that are very close to one another are more influent
than things that are farther apart. The optimal power is
determined by minimizing the prediction error.

2.3.1  Ordinary Kriging

Ordinary Kriging (OK) is one of the most basic kriging
methods. At the unsampled location x , z is estimated by:

2(4) =Y 42() @)

where Z(x,) is the estimated value of the random variables
(RV) Z at the unsampled location xand 4 are the n
weights assigned to the observation points Z(x). The

weights A sum to one to assure unbiased conditions and they
are found by minimizing the estimation variance.

The RV Z(x) can be decomposed into a trend component
m(X) and a residual component R(X) :

Z(x) = m(x) + R(x) 3)

OK assumes stationarity of the mean and considers M(X)

to be a constant, but unknown, value. Nonstationary
conditions are taken into account by restricting the domain
of stationary to a local neighbourhood and moving it across

the study area. The residual component R(X) is modeled as

a stationary RV with zero mean and under the assumption of
intrinsic stationary.

2.3.2 Universal Kriging

Universal Kriging (UK) considers that m(X) (Eq. (3)) is not
constant, but it wvaries smoothly within the local
neighbourhood, representing a local trend. The trend M(X)

is recalculated with each local neighbourhood. This trend
component is modeled as a weighted sum of known

functions f (x)and unknown coefficients a,l=0,...,L
(Journel & Rossi, 1989):

m(x) = af (x) @

2.3.3 Variogram modelling

The experimental variogram or semivariogram was
calculated as a half of the squares difference between paired
values to distance by which they were separated:

1 N (h) ,
7(h) = —— Zs —Z(s +h
P =— (h)g( s,~Z(s, +h)) 5)

where N(h) is the number of pairs of data locations at
distance h apart.
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In practice, the average squared distance was obtained
for all pairs separated by a range of distances and these
average squares differences were plotted against the average
separation distance. A theoretical model might be fitted to
the semivariogram and the coefficient of this model could be
used for kriging. In this study, we used four existing
theoretical models as following:

. Gaussian Model:

For Gaussian model we have semivariogram expression:

: h
y(h)y=0c (l—exp( - D (6)

where variance o >0 and L >0 are two parameters of

this model. Because the covariance function decays
asymptotically, the range a is defined as distance
ax7L/4,

*  Exponential Model

For Exponential model

expressed by:

: h
o= (onf2) »

where the parameters are the variance o >0 and the
length parameter L > 0. The range isa =~ 3L..

semivariogram expression is

*  Pentaspherical Model

For Pentaspherical model we have semivariogram
expression:
115h 5(h) 3[hY
o |———|—|+-|- for0<h<lL
y(h) = 8L 4\L/ 8\L (8)
o’ otherwise

where & > 0and L > oare two parameters.
*  Hole-Effect Model

For Hole-Effect model semivariogram expression is
expressed by:

[feeDeel ).
y(h)=0c"|1-| 1-— |exp| —— 9)
L L

where o* > 0and L > 0are two parameters.
2.3.4 Inverse Distance weighting (IDW)

Inverse Distance Weighting (IDW) estimates values at un-
sampled points by the weighted average of observed data at
the surrounding points. Therefore, this can be defined as a

distance reverse function of each point from neighboring
points (Teegavarapu & Chandramouli, 2005). That means by
using a linear combination of values at a known sampled
point, values at un-sampled points can be calculated (Ly et
al., 2011). IDW relies on the theory that the unknown value
of a point is more influenced by closer points than the points
further away.

Z(S,) = 2,1 xZ(S,) (10)
A= 6.’
i ZN:di—p (11)
N
2 A=l (12)

i=1
where

Z(S,) value of prediction for location S,
N number of measured sample points
A weight assigned to each measure points

Z(S,) neighbors to include

d. distance between prediction and measured point
p parameter power (p > 1).

The p parameter is specified as a geometric form for
weight while other specification are possible. Small power
p tends to give estimated values as averages of Z(Si) in the
neighborhood, while large power ptends to give larger

weights to nearest points and increasingly down-weights
points further away (Lu & Wong, 2008).

2.4 Validation

The Root Means Square Error (RMSE), Mean Absolute
Error (MAE) and Mean Error Percentage (MEPE) were used
to calculate the averaged squared difference between the
observed value and the estimated values.

*  Root Mean Square Error:

1 N
RMSE = /—Zeﬁ (13)
N =

. Mean Absolute Error:

MAE = ii“|gi| (14)

i=1

*  Mean Error Percentage:
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(15)

> & =S, —S,thatS and$ represent the predicted

and observed values of soil parameters
respectively.
»  Nis the number of observation points of data set

(N =34).
3. RESULTS AND DISCUSSION
3.1 Exploratory Statistics for Soil Properties

Summary statistics of soil properties is shown in Table 1 By
using power transformation method, we can get the result
that all soil parameters tend to follow by normal distribution.
This is shown that histograms and Q-Q plot in Fig. 3 provide
for visual examination of fitting to normality, but we
complement the graphical procedures with some statistics to
objectively confirm normality assumption.

Table 6. Summary statistics for transformed soil parameters.

Soil Data InClay  Silt Sand InTC TN -InBD

Min 1.08 4.16 2877 078 0.07 0.40

1" Quartile 352 2113 5620 1.65 025 054
Median 1238 2699 6253 272 0.29 0.64
Mean 1238 2618 6144 301 032 0.73
3rd Quartile 1865 31.08 69.07 343 035 0.89
Max 3723 4115 9232 1058 0.90 0.73
Skewness 0.87 -0.69 -044 194 188 1.13

Kurtosis 2.69 3.84 4.23 726 9.01 3.26
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clay, silt, sand, TC, TN and Bulk density.

Figure 3. Histogram and Normal Q-Q plot of soil properties



3.2 Comparison of the Interpolated Maps by Three Methods

Table 2 indicates the elements of each interpolation models
for OK and UK. Those elements are nugget, sill, range, and
interpolated prediction errors which are Root Mean Square
Error (RMSE), Mean Absolute Error (MAE),

and Mean Error Percentage (MEPE). According to Table 2,
Hole-effect Model contains the lowest error among RMSE,
MAE and MEPE comparing to other three models: Gaussian
Model, Exponential Model, and Pentaspherical Model. In
short, Hole-effect Model is the best semivariogram model to
show the strong spatial distribution of soil parameters.

Table 7. Data of the different interpolated methods for soil properties.

Methods Model Soil Nugget ~ Fartial Sl RMSE MAE MEPE  Range

Properties sill (m)

InClay 0.961 0.053 1.013 09942 0.8228 4.7227 3000

Silt 36.085 22.862  58.947 88467 7.1043  1.1400 800

Gaussian Sand 161.002 4242  165.244 124642 83626 0.2763 800
Model InTC 0.370 0.061 0431  0.6564 0.5120  2.4709 3000

TN 0.011 0.006 0.017  0.1574 0.1079  0.8501 800

-InBD 0.025 0.031 0.056  0.2493 0.1968 10.1965 2000

InClay 0.990 0.000 0990  0.9934 0.8236 4.7322 3000

Silt 0.000 62.291  62.291 87407 6.6875  1.1550 800

Exponential Sand 88.623 91.527  180.150 11.8601 8.3294  0.2548 800
Model InTC 0.373 0.041 0.414  0.6609 0.5162  2.4799 3000

TN 0.001 0.017 0.018  0.1614 0.1133 0.8772 800

oK -InBD 0.008 0.046 0.054  0.2510  0.2029 _ 9.9469 2000
InClay 0.990 0.000 0.990 ]0.9934 0.8236 4.7322 3000

Silt 32.129 19.957  52.086 |8.3200 6.5390  1.1090 800

Hole-effect Sand 66.795 98.995  165.790 [11.1850 8.3294  0.2548 800
Model InTC 0.404 0.000 0.404 ]0.6525 0.5084  2.4557 3000

TN 0.012 0.003 0.015 ]0.1483 0.1011 0.8035 800

-InBD 0.020 0.028 0.047 ]0.2666 0.2114 10.3365 2000

InClay 0.990 0.000 0990  0.9934 0.8236 4.7322 3000

Silt 15.755 41.694 57449 86707 6.7115  1.1433 800

Pentaspherical Sand 101.169  73.499  174.668 11.2850 8.3427  0.2511 800
Model InTC 0.378 0.035 0.413  0.6588 05142 2.4731 3000

TN 0.006 0.010 0016  0.1579 0.1099 0.8577 800

-InBD 0.013 0.039 0.052  0.2552 0.2047 10.1188 2000

InClay 0.862 0.000 0.862  0.9934 0.8236 4.7322 3000

Silt 35.813 22.727 58540 88504 7.1027  1.1406 800

Gaussian Sand 162.173 0563  162.736 125073 8.3479  0.2779 800
Model InTC 0.363 0.027 0390  0.6538 0.5100  2.4600 3000

UK TN 0.013 0.003 0016  0.1515 0.1019 0.8122 800
-InBD 0.024 0.033 0.057  0.2513 0.1984 10.2471 2000

InClay 0.862 0.000 0.862  0.9934 0.8236 4.7322 3000

Exponential Silt 0.000 62.264  62.264 87407 6.6875  1.1550 800
Model Sand 96.036 80.878  176.914 11.9116 8.3340  0.2570 800
InTC 0.378 0.000 0378  0.6525 0.5084  2.4557 3000
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TN 0.007 0.010 0.017 0.1549  0.1062 0.8381 800
-InBD 0.007 0.048 0.055 0.2514  0.2034  9.9538 2000

InClay 0.862 0.000 0.862 0.9934  0.8236 4.7322 3000
Silt 31.704 20.374 52.078 8.3148 6.5288  1.1093 800
Hole-effect Sand 70.405 93.904 164.309 |11.1754 8.0870  0.2152 800
Model InTC 0.378 0.000 0.378 0.6525 0.5084  2.4557 3000
TN 0.014 0.001 0.016 0.1479  0.0994  0.7933 800
-InBD 0.021 0.029 0.049 0.2662  0.2110 10.3279 2000
InClay 0.862 0.000 0.862 0.9934 0.8236  4.7322 3000
Silt 15.269 42.240 57.509 8.6724 6.7034  1.1438 800
Pentaspherical Sand 105.764 66.541 172.305 11.8694 8.3362  0.2531 800
Model InTC 0.378 0.000 0.378 0.6525 0.5084  2.4557 3000
TN 0.011 0.005 0.016 0.1522  0.1033 0.8201 800
-InBD 0.012 0.041 0.053 0.2568 0.2065 10.1511 2000

The cross validation (CV) comparison was plotted to
examine how well the surface model predicts an unknown
value. The CV tools uses statistical measures to assess the
surface models performance. Its compares measured values
with the predicted values derived from the surface model.  Bulk Density which is a bit high value than 1.0, this indicates
Fig. 4 shows graphical comparison between measured and  that its prediction accuracies have almost comparable
predicted values. Ideally, the predicted values should be the  accuracies (Diodato & Ceccarelli, 2004).

same as the measured ones, but in reality, data points scatter
along this line due to natural variation and uncertainties.
Since Root Mean Square Standardized Prediction Errors for
UK with Hole-effect semivariogram are close to 1.0 except
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Figure 4. The cross validation comparison of soil properties: clay, silt, sand, TC, TN and Bulk density.

To compare the performance of the interpolators, we  ranked the first low error of prediction which is followed by
calculate Root Mean Square Error, Mean Absolute Error, and ~ Ordinary Kriging and Inverse Distance Weighting. IDW is
Mean Error Percentage as shown in Table 3. Table 3 shows the third accurate method because it produce the highest error
that the differences between the OK and UK are very small. ~ among the three interpolation methods.

Finally, according to Table 3 and Fig. 4 Universal Kriging is

Table 8. Comparison of interpolation methods using RMSE, MAE, and MEPE.

Evaluation . . UK

Methods Soil Properties OK IDW
InClay 0.9934 0.9934 0.9917

Silt 8.3200 8.3148 8.3835
Sand 11.1850 11.1754 11.9262

RMSE

InTC 0.6525 0.6525 0.7078

TN 0.1483 0.1479 0.1503

-InBD 0.2666 0.2662 0.2323

InClay 0.8236 0.8236 0.8151

Silt 6.5390 6.5288 6.4528

Sand 8.3294 8.0870 8.7786

MAE

InTC 0.5084 0.5084 0.5561

TN 0.1011 0.0994 0.1053

-InBD 0.2114 0.2110 0.1867

InClay 47322 4.7322 4.6152

Silt 1.1090 1.1093 1.1248

Sand 0.2548 0.2152 0.2556

MEPE

InTC 2.4557 2.4557 2.5678

TN 0.8035 0.7933 0.8011

-InBD 10.3365 10.3279 9.0832
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Figure 5. Interpolated map of clay, silt, sand, total carbon, total nitrogen and Bulk density.

4. CONCLUSIONS

This study is to apply Geostatistical interpolation methods
to interpolate spatial pattern soil properties in Imba-Numa
watershed, Chiba Prefecture, Japan. The objectives of this
study was to provide information on soil properties and
mapping methods which are in common use. This case
study showed that UK method is more accurate than the

OK and IDW for predicting the spatial pattern of soil
parameters (soil particles, TC TN and BD) by using Hole-
effect Model. The generally superior performance of UK is
due to less prediction errors. Therefore, UK can be
considered as an accurate method for interpolating soil
parameters (soil particles, TC TN and BD).

The results of this study can be a key for the future
research to choose the appropriate interpolation methods to
generate map of soil properties. Additionally, it can help if
the methodology applied in this study can also be applied
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to generate map of soil particles, TC, TN and BD in other
area where spatial distribution of soil parameters was
currently unavailable.

In this study, because of the limitation of point data of
soil properties; therefore, the result of spatial distribution
of soil properties were not so satisfactory and had
contented high error. For the next study, to generate the
better spatial distribution of soil properties, there are some
recommendations:

- investigate as many points of soil parameter data as
possible

apply interpolation method with other Geostatistical

interpolation software for example: SGeMS, Gslib,

and other softwares because it is easier to generate
geostatistics element such as semivariogram and so
on.
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