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Abstract: Spatial distribution of soil data is a current issue with which most of areas are being faced. Imba-Numa watershed, Japan, is also 

one among those areas which lack of spatial data of soil parameters. This study aims to generate spatially distribution of soil properties 

which consist of soil particles, total carbon, total nitrogen and Bulk density in Imba-Numa watershed. Three geostatistical interpolation 

methods: Ordinary Kriging (OK), Universal Kriging (UK), and Inverse Distance Weighting (IDW), were applied to interpolate soil 

properties into spatially continuous data. To evaluate the performance of methods to obtain the best method which has the minimum error, 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Error Percentage (MEPE) were used. Cross Validation 

comparison was also used to compare and validate method. The results show that Universal Kriging with Hole-effect Model is the best 

method to interpolate soil parameters (except Bulk density) in Imba-Numa watershed. Due to limitation of available data, the interpolated 

maps could not perfectly provide the satisfactory map and consists of error, but it is still acceptable. 
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1. INTRODUCTION
11

 

The paper map, as a product of a traditional soil mapping, 

appears to be increasingly irrelevant to many users and does 

not have a market with land managers and policy makers at 

different scale (Omran, 2008). While the traditional role of 

soil survey is diminishing, the need of soil information 

becomes more important in terms of sustainable land 

management. Many policies required good soil information 

and rapid answers. We do not have enough and accurate soil 

data to contribute to variety of application fields from the 

increasing demand. 

                                                 
*
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There are a lot of soil information and maps of soil 

which are not completed, or there is too much blank area. 

Widely used soil models essentially yield empirical result 

due to lack of good soil data (Stroosnijder, 2005). Updating 

soil inventories is one of the main fields where new 

technologies should facilitate data sampling and acquisition. 

New high quality soil data is needed to complement existing 

database and to provide spatial detail required by the users. 

The failure to evaluate map accuracy due to the consistency 

between predicted and observed attribute values for any 

given location within the mapped region is a recurring 

limitation. At present there is no consensus regarding best or 

most approaches to map soil properties. It was known little 

about performance and accuracy of different interpolation 

methods applied to soil properties. 

Geostatistics has played an increasing role in both 

groundwater hydrology and petroleum reservoir 
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characterization and modeling, driven mainly by the 

recognition that heterogeneity in petrophysical properties 

dominate groundwater flow, solute transport, and multiphase 

migration in the subsurface. Geostatistics, by transforming a 

spare data set from the field into a spatial map, offers a 

means to recreate heterogeneity to be incorporated into 

numerical flow and transport modeling. On the other hand, 

by transforming a spare data set into multiple spatial maps, it 

offers a means of evaluating the uncertainties on modeling 

due to the uncertain nature of each map. 

Geostatistics often faces interpolation and estimation 

problems during analyzing spare data from field 

observations. Geostatistic is an invaluable tool that can be 

used to characterize spatial or temporal phenomena. 

Geostatistics originated from the mining and petroleum 

industries, starting with the work by Danie Krige in the 

1950‟s and was further developed by Georges Matheron in 

the 1960‟s. In both industries, geostatistics is successfully 

applied to solve cases where decision concerning expensive 

operations are since been extended to many other fields in or 

related in space. The quality control is not part of standard 

interpolation methods. Furthermore, standard interpolation 

methods do not take into account the intrinsic properties of 

the interpolated phenomena as they only take account of the 

position of the measurement points. Geostatistics uses a 

probabilistic model to overcome these problems. 

Geostatistics was originally used in prospecting where it was 

necessary to estimate the potential of a deposit as accurately 

as possible using spatially dispersed sampling.  

Interpolation can be undertaken utilizing simple 

mathematical models (e.g., inverse distance weighting 

(IDW), splines and Thiessen polygon), or other complex 

models (e.g., geostatistical method, such as kriging) 

(Negreiros et al., 2011). The review of comparative studies 

of interpolation methods applied to soil properties 

demonstrates that the selection of method can significantly 

influence map accuracy. Ordinary Kriging (OK), Universal 

Kriging (UK) and Inverse Distance Weighting (IDW) are 

ways to interpolate soil properties. Past applications of these 

methods have given a range of results which have not 

always been consistent. 

The main objectives of this study are to analyze of soil 

parameters in Imba-Numa watershed by using statistical 

analysis, compare the performance of geostatistical 

interpolation methods (OK, UK and IDW) and to interpolate 

soil properties (soil particles, Bulk density, total carbon and 

total nitrogen) for future use. 

2. METHODOLOGY 

2.1 Study area 

Figures This study was conducted on the Imba-Numa 

watershed, located in Chiba Prefecture, 30-50 km eastof 

Tokyo metropolitan area, Japan. The surface of the study 

area is 11002.24 ha with an altitude ranging from 8 to 90 

meters. The population in this basin is around 767,000 

people, which accounts for about 12 percent of the total 

population of the prefecture. It is the third biggest population 

basin after Biwa basin and Kasumigaura basin. Imba-Numa 

Lake is a former lagoon located in Imba basin. Rivers such 

as the Kashimagawa River, Shinkawa River, and 

Tagurigawa River flow into the lake, resulting in a 

catchment of 541.1 km
2
. Valuable animals and plants inhabit 

the environs of the many springs that appear in the rivers 

feeding the lake. This lake is divided in to two parts; 

Northern Imba-Numa Lake and Western Imba-Numa Lake. 

The original shape of Imba-Numa Lake is like “W” and 

larger than the size of the lake nowadays. Until the 1960‟s, it 

was 25.8 km
2
, but as a result of land reclamation after the 

war (World War II), the lake is divided into Northern and 

Western Imba-Numa Lake which are connected by a narrow 

waterway, and the area have been reduced to less than half. 

Now its size is 11.55 km
2
, with a mean depth of 1.7 m. 

However, it is still the largest lake in Chiba prefecture. Both 

Northern and Western Imba-Numa Lake are linked via 

central drainage and Imba waterway. 

 

 

Figure 1.  Study area, Imba-Numa watershed. 

2.2 Soil sample and analysis 

2.2.1 Soil sample data 

Soil data from Japan Soil Association was used within this 

study. The purpose of this soil data investigation is to 

support to conservation in agriculture.  This data consists of 

soil parameters including soil particles (percentage of clay, 

silt and sand), Total Carbon, Total Nitrogen and Bulk 

density.  
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Figure 2. Map of available soil sample point data. 

2.2.2 Data transformation 

Unimodal and nearly symmetric distributions have many 

practical advantages. A single number can be used to 

represent the central value in the batch, because the mode, 

median, and arithmetic mean are practically the same. 

Furthermore, histogram approximates a bell-shaped normal 

distribution, the standard deviation is about three-fourths the 

interquartile range, so that it does not matter whether we use 

the standard deviation or the interquartile range to measure 

the spread.  

To guarantee that soil data follows by normal 

distribution, data transformation method was used. A 

suitable model can be fitted to the transformed data making 

a distribution of the original data available by inverting a 

function of random variable. In this study, power 

transformation method was applied in order to transform soil 

parameters such as clay percentage, total carbon and Bulk 

density to be closer to Normal distribution. The power 

transform is defined as follows for non-negative data:  

 
( 1) / 0

ln( ) 0

kz k k
y

z k

  
 



 (1) 

 where k is a real valued parameter.  

2.3 Deterministic methods  

Ordinary Kriging (OK), Universal Kriging (UK), and 

Inverse Distance Weighting (IDW) are three interpolation 

method which were used to interpolate soil properties in this 

study. IDW interpolation implements the assumption that 

things that are very close to one another are more influent 

than things that are farther apart.  The optimal power is 

determined by minimizing the prediction error. 

2.3.1 Ordinary Kriging 

Ordinary Kriging (OK) is one of the most basic kriging 

methods. At the unsampled location
0

x , Z is estimated by: 

 
0

1

( ) ( )

n

i i

i

Z x Z x


  (2) 

where 
0

( )Z x is the estimated value of the random variables 

(RV) Z  at the unsampled location 
0

x and 
i
 are the n  

weights assigned to the observation points ( )
i

Z x . The 

weights 
i
 sum to one to assure unbiased conditions and they 

are found by minimizing the estimation variance.  

The RV ( )Z x can be decomposed into a trend component 

( )m x and a residual component ( )R x : 

 ( ) ( ) ( )Z x m x R x   (3) 

OK assumes stationarity of the mean and considers ( )m x

to be a constant, but unknown, value. Nonstationary 

conditions are taken into account by restricting the domain 

of stationary to a local neighbourhood and moving it across 

the study area. The residual component ( )R x  is modeled as 

a stationary RV with zero mean and under the assumption of 

intrinsic stationary.    

2.3.2 Universal Kriging 

Universal Kriging (UK) considers that ( )m x (Eq. (3)) is not 

constant, but it varies smoothly within the local 

neighbourhood, representing a local trend. The trend  ( )m x  

is recalculated with each local neighbourhood. This trend 

component is modeled as a weighted sum of known 

functions ( )
l

f x and unknown coefficients , 0, ...,
l

a l L

(Journel & Rossi, 1989): 

 

1

( ) ( )

L

l l

l

m x a f x


  (4) 

2.3.3 Variogram modelling  

The experimental variogram or semivariogram was 

calculated as a half of the squares difference between paired 

values to distance by which they were separated:  

  
( )

2

1

1
ˆ( ) ( )

2 ( )

N h

i i

i

h Zs Z s h
N h




    (5) 

where ( )N h  is the number of pairs of data locations at 

distance h  apart.  
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In practice, the average squared distance was obtained 

for all pairs separated by a range of distances and these 

average squares differences were plotted against the average 

separation distance. A theoretical model might be fitted to 

the semivariogram and the coefficient of this model could be 

used for kriging. In this study, we used four existing 

theoretical models as following:  

 Gaussian Model: 

For Gaussian model we have semivariogram expression:  

 

2

2

2
( ) 1 exp

h
h

L
  

  
  
  

 (6) 

where variance 
2

0   and 0L   are two parameters of 

this model. Because the covariance function decays 

asymptotically, the range a  is defined as distance

7 / 4a L . 

 Exponential Model 

For Exponential model semivariogram expression is 

expressed by: 

 
2

( ) 1 exp
h

h
L

   
  
  
  

 (7) 

where the parameters are the variance 
2

0   and the 

length parameter 0L  . The range is 3a L .  

 Pentaspherical Model 

For Pentaspherical model we have semivariogram 

expression: 

 
   

3 5

2

2

15 5 3
for 0

( ) 8 4 8

otherwise

h h h
h L

h L L L






   


  
  
  



   (8) 

where 
2

0  and 0L  are two parameters. 

 Hole-Effect Model  

For Hole-Effect model semivariogram expression is 

expressed by: 

 
2

( ) 1 1 exp
h h

h
L L

    
    

        
 (9) 

where 
2

0  and 0L  are two parameters. 

2.3.4 Inverse Distance weighting (IDW) 

Inverse Distance Weighting (IDW) estimates values at un-

sampled points by the weighted average of observed data at 

the surrounding points. Therefore, this can be defined as a 

distance reverse function of each point from neighboring 

points (Teegavarapu & Chandramouli, 2005). That means by 

using a linear combination of values at a known sampled 

point, values at un-sampled points can be calculated (Ly et 

al., 2011). IDW relies on the theory that the unknown value 

of a point is more influenced by closer points than the points 

further away.  
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1

1
N

i

i



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where 

0

ˆ ( )Z S value of prediction for location 
0

S  

N  number of measured sample points 

i
  weight assigned to each measure points 

ˆ ( )
i

Z S neighbors to include 

i
d  distance between prediction and measured point 

p  parameter power (p > 1).  

The p parameter is specified as a geometric form for 

weight while other specification are possible. Small power 

p tends to give estimated values as averages of ˆ ( )
i

Z S in the 

neighborhood, while large power p tends to give larger 

weights to nearest points and increasingly down-weights 

points further away (Lu & Wong, 2008). 

2.4 Validation 

The Root Means Square Error (RMSE), Mean Absolute 

Error (MAE) and Mean Error Percentage (MEPE) were used 

to calculate the averaged squared difference between the 

observed value and the estimated values.  

 Root Mean Square Error:  

 
2

1

1 N

i

i

RMSE
N




   (13) 

 Mean Absolute Error: 

 
1

1 N

i

i

MAE
N




   (14) 

 Mean Error Percentage: 
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 
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where:  

 i p oS S   that
p

S and
o

S represent the predicted 

and observed values of soil parameters 

respectively.  

 N is the number of observation points of data set 

( 34)N  . 

3. RESULTS AND DISCUSSION 

3.1 Exploratory Statistics for Soil Properties  

Summary statistics of soil properties is shown in Table 1 By 

using power transformation method, we can get the result 

that all soil parameters tend to follow by normal distribution. 

This is shown that histograms and Q-Q plot in Fig. 3 provide 

for visual examination of fitting to normality, but we 

complement the graphical procedures with some statistics to 

objectively confirm normality assumption.  
 

Table 6. Summary statistics for transformed soil parameters. 

Soil Data lnClay Silt Sand lnTC TN  -lnBD 

Min 1.08  4.16  28.77 0.78 0.07 0.40 

1st Quartile 3.52 21.13 56.20 1.65  0.25 0.54 

Median 12.38 26.99 62.53 2.72  0.29 0.64 

Mean 12.38 26.18 61.44 3.01  0.32  0.73 

3rd Quartile 18.65 31.08 69.07 3.43 0.35 0.89 

Max 37.23 41.15 92.32 10.58 0.90 0.73 

Skewness 0.87 -0.69 -0.44  1.94  1.88 1.13 

Kurtosis 2.69 3.84 4.23  7.26 9.01 3.26 
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Figure 3. Histogram and Normal Q-Q plot of soil properties: clay, silt, sand, TC, TN and Bulk density. 
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3.2 Comparison of the Interpolated Maps by Three Methods 

Table 2 indicates the elements of each interpolation models 

for OK and UK. Those elements are nugget, sill, range, and 

interpolated prediction errors which are Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE),  

and Mean Error Percentage (MEPE). According to Table 2, 

Hole-effect Model contains the lowest error among RMSE, 

MAE and MEPE comparing to other three models: Gaussian 

Model, Exponential Model, and Pentaspherical Model. In 

short, Hole-effect Model is the best semivariogram model to 

show the strong spatial distribution of soil parameters.   

 

Table 7. Data of the different interpolated methods for soil properties. 

Methods Model 
Soil 

Properties 
Nugget 

Partial 

sill 
Sill RMSE MAE MEPE 

Range 

(m) 

OK 

Gaussian 

Model 

lnClay 0.961  0.053  1.013  0.9942  0.8228  4.7227  3000 

Silt 36.085  22.862  58.947  8.8467  7.1043  1.1400  800 

Sand 161.002  4.242  165.244  12.4642  8.3626  0.2763  800 

lnTC 0.370  0.061  0.431  0.6564  0.5120  2.4709  3000 

TN 0.011  0.006  0.017  0.1574  0.1079  0.8501  800 

 -lnBD 0.025  0.031  0.056  0.2493  0.1968  10.1965  2000 

Exponential 

Model 

lnClay 0.990  0.000  0.990  0.9934  0.8236  4.7322  3000 

Silt 0.000  62.291  62.291  8.7407  6.6875  1.1550  800 

Sand 88.623  91.527  180.150  11.8601  8.3294  0.2548  800 

lnTC 0.373  0.041  0.414  0.6609  0.5162  2.4799  3000 

TN 0.001  0.017  0.018  0.1614  0.1133  0.8772  800 

 -lnBD 0.008  0.046  0.054  0.2510  0.2029  9.9469  2000 

Hole-effect 

Model 

lnClay 0.990  0.000  0.990  0.9934  0.8236  4.7322  3000 

Silt 32.129  19.957  52.086  8.3200  6.5390  1.1090  800 

Sand 66.795  98.995  165.790  11.1850  8.3294  0.2548  800 

lnTC 0.404  0.000  0.404  0.6525  0.5084  2.4557  3000 

TN 0.012  0.003  0.015  0.1483  0.1011  0.8035  800 

 -lnBD 0.020  0.028  0.047  0.2666  0.2114  10.3365  2000 

Pentaspherical 

Model  

lnClay 0.990  0.000  0.990  0.9934  0.8236  4.7322  3000 

Silt 15.755  41.694  57.449  8.6707  6.7115  1.1433  800 

Sand 101.169  73.499  174.668  11.2850  8.3427  0.2511  800 

lnTC 0.378  0.035  0.413  0.6588  0.5142  2.4731  3000 

TN 0.006  0.010  0.016  0.1579  0.1099  0.8577  800 

 -lnBD 0.013  0.039  0.052  0.2552  0.2047  10.1188  2000 

UK 

Gaussian 

Model 

lnClay 0.862  0.000  0.862  0.9934  0.8236  4.7322  3000 

Silt 35.813  22.727  58.540  8.8504  7.1027  1.1406  800 

Sand 162.173  0.563  162.736  12.5073  8.3479  0.2779  800 

lnTC 0.363  0.027  0.390  0.6538  0.5100  2.4600  3000 

TN 0.013  0.003  0.016  0.1515  0.1019  0.8122  800 

 -lnBD 0.024  0.033  0.057  0.2513  0.1984  10.2471  2000 

Exponential 

Model 

lnClay 0.862  0.000  0.862  0.9934  0.8236  4.7322  3000 

Silt 0.000  62.264  62.264  8.7407  6.6875  1.1550  800 

Sand 96.036  80.878  176.914  11.9116  8.3340  0.2570  800 

lnTC 0.378  0.000  0.378  0.6525  0.5084  2.4557  3000 
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TN 0.007  0.010  0.017  0.1549  0.1062  0.8381  800 

 -lnBD 0.007  0.048  0.055  0.2514  0.2034  9.9538  2000 

Hole-effect 

Model 

lnClay 0.862  0.000  0.862  0.9934  0.8236  4.7322  3000 

Silt 31.704  20.374  52.078  8.3148  6.5288  1.1093  800 

Sand 70.405  93.904  164.309  11.1754  8.0870  0.2152  800 

lnTC 0.378  0.000  0.378  0.6525  0.5084  2.4557  3000 

TN 0.014  0.001  0.016  0.1479  0.0994  0.7933  800 

 -lnBD 0.021  0.029  0.049  0.2662  0.2110  10.3279  2000 

Pentaspherical 

Model  

lnClay 0.862  0.000  0.862  0.9934  0.8236  4.7322  3000 

Silt 15.269  42.240  57.509  8.6724  6.7034  1.1438  800 

Sand 105.764  66.541  172.305  11.8694  8.3362  0.2531  800 

lnTC 0.378  0.000  0.378  0.6525  0.5084  2.4557  3000 

TN 0.011  0.005  0.016  0.1522  0.1033  0.8201  800 

 -lnBD 0.012  0.041  0.053  0.2568  0.2065  10.1511  2000 

 
The cross validation (CV) comparison was plotted to 

examine how well the surface model predicts an unknown 

value. The CV tools uses statistical measures to assess the 

surface models performance. Its compares measured values 

with the predicted values derived from the surface model. 

Fig. 4 shows graphical comparison between measured and 

predicted values. Ideally, the predicted values should be the 

same as the measured ones, but in reality, data points scatter 

along this line due to natural variation and uncertainties. 

Since Root Mean Square Standardized Prediction Errors for 

UK with Hole-effect semivariogram are close to 1.0 except 

Bulk Density which is a bit high value than 1.0, this indicates 

that its prediction accuracies have almost comparable 

accuracies (Diodato & Ceccarelli, 2004).  
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Figure 4. The cross validation comparison of soil properties: clay, silt, sand, TC, TN and Bulk density. 

To compare the performance of the interpolators, we 

calculate Root Mean Square Error, Mean Absolute Error, and 

Mean Error Percentage as shown in Table 3. Table 3 shows 

that the differences between the OK and UK are very small. 

Finally, according to Table 3 and Fig. 4 Universal Kriging is 

ranked the first low error of prediction which is followed by 

Ordinary Kriging and Inverse Distance Weighting. IDW is 

the third accurate method because it produce the highest error 

among the three interpolation methods. 

Table 8. Comparison of interpolation methods using RMSE, MAE, and MEPE. 

Evaluation  

Methods 
Soil Properties OK 

UK 
IDW 

RMSE 

lnClay 0.9934  0.9934  0.9917 

Silt 8.3200  8.3148  8.3835 

Sand 11.1850  11.1754  11.9262 

lnTC 0.6525  0.6525  0.7078 

TN 0.1483  0.1479  0.1503 

 -lnBD 0.2666  0.2662  0.2323 

MAE 

lnClay 0.8236  0.8236  0.8151 

Silt 6.5390  6.5288  6.4528 

Sand 8.3294  8.0870  8.7786 

lnTC 0.5084  0.5084  0.5561 

TN 0.1011  0.0994  0.1053 

 -lnBD 0.2114  0.2110  0.1867 

MEPE 

lnClay 4.7322  4.7322  4.6152 

Silt 1.1090  1.1093  1.1248 

Sand 0.2548  0.2152  0.2556 

lnTC 2.4557  2.4557  2.5678 

TN 0.8035  0.7933  0.8011 

 -lnBD 10.3365  10.3279  9.0832 
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Figure 5. Interpolated map of clay, silt, sand, total carbon, total nitrogen and Bulk density. 

 

4. CONCLUSIONS  

This study is to apply Geostatistical interpolation methods 

to interpolate spatial pattern soil properties in Imba-Numa 

watershed, Chiba Prefecture, Japan. The objectives of this 

study was to provide information on soil properties and 

mapping methods which are in common use. This case 

study showed that UK method is more accurate than the 

OK and IDW for predicting the spatial pattern of soil 

parameters (soil particles, TC TN and BD) by using Hole-

effect Model. The generally superior performance of UK is 

due to less prediction errors. Therefore, UK can be 

considered as an accurate method for interpolating soil 

parameters (soil particles, TC TN and BD). 

The results of this study can be a key for the future 

research to choose the appropriate interpolation methods to 

generate map of soil properties. Additionally, it can help if 

the methodology applied in this study can also be applied 
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to generate map of soil particles, TC, TN and BD in other 

area where spatial distribution of soil parameters was 

currently unavailable. 

In this study, because of the limitation of point data of 

soil properties; therefore, the result of spatial distribution 

of soil properties were not so satisfactory and had 

contented high error.  For the next study, to generate the 

better spatial distribution of soil properties, there are some 

recommendations:  

- investigate as many points of soil parameter data as 

possible 

- apply interpolation method with other Geostatistical 

interpolation software for example: SGeMS, Gslib, 

and other softwares because it is easier to generate 

geostatistics element such as semivariogram and so 

on. 

ACKNOWLEDGMENTS 

I would like to express special thank to Sato Yo 

International Scholarship Foundatoin for providing 

monthly allowance in duration of this research. 

REFERENCES 

Diodato, N., et al. (2004). Multivariate indicator Kriging 

approach using a GIS to classify soil degradation 

for Mediterranean agricultural lands. Ecological 

Indicators, 4(3), 177-187.  

Falivene, O., et al. (2010). Interpolation algorithm ranking 

using cross-validation and the role of smoothing 

effect. A coal zone example. Computers & 

Geosciences, 36(4), 512-519.  

Goovaerts, P. (1999). Geostatistics in soil science: state-of-

the-art and perspectives. Geoderma, 89(1), 1-45.  

Gotway, C. A., et al. (1996). Comparison of kriging and 

inverse-distance methods for mapping soil 

parameters. Soil Science Society of America 

Journal, 60(4), 1237-1247.  

Jongman, R. H., et al. (1995). Data analysis in community 

and landscape ecology: Cambridge university 

press. 

Journel, A. G., et al. (1989). When do we need a trend 

model in kriging? Mathematical Geology, 21(7), 

715-739.  

Kravchenko, A. (2003). Influence of spatial structure on 

accuracy of interpolation methods. Soil Science 

Society of America Journal, 67(5), 1564-1571.  

Kravchenko, A., et al. (1999). A comparative study of 

interpolation methods for mapping soil properties. 

Agronomy Journal, 91(3), 393-400.  

Lu, G. Y., et al. (2008). An adaptive inverse-distance 

weighting spatial interpolation technique. 

Computers & Geosciences, 34(9), 1044-1055.  

Ly, S., et al. (2011). Geostatistical interpolation of daily 

rainfall at catchment scale: the use of several 

variogram models in the Ourthe and Ambleve 

catchments, Belgium. Hydrology & Earth System 

Sciences, 15(7).  

Matheron, G. (1971). The theory of regionalized variables 

and its applications (Vol. 5): École national 

supérieure des mines. 

Minasny, B., et al. (2007). Spatial prediction of soil 

properties using EBLUP with the Matérn 

covariance function. Geoderma, 140(4), 324-336.  

Negreiros, J., et al. (2011). Evaluation of Stochastic 

Geographical Matters: Morphologic Geostatistics, 

Conditional Sequential Simulation and 

Geographical Weighted Regression. Trends in 

Applied Sciences Research, 6(3).  

Omran, E. E. (2008). Is Soil Science Dead and Buried? 

Future Image in the world of 10 billion people: 

CATRINA. 

Panagopoulos, T., et al. (2006). Analysis of spatial 

interpolation for optimising management of a 

salinized field cultivated with lettuce. European 

Journal of Agronomy, 24(1), 1-10.  

Rossiter, D. (2000). Methodology for soil resource 

inventories. ITC Lecture Notes SOL, 27.  

Stroosnijder, L. (2005). Measurement of erosion: is it 

possible? Catena, 64(2), 162-173.  

Teegavarapu, R. S., et al. (2005). Improved weighting 

methods, deterministic and stochastic data-driven 

models for estimation of missing precipitation 

records. Journal of Hydrology, 312(1), 191-206.  

Weber, D. D., et al. (1994). Evaluation and comparison of 

spatial interpolators II. Mathematical Geology, 

26(5), 589-603. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




