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Abstract: DC motor is a device that converts electrical energy into mechanical energy. Nowadays, Permanent Magnet DC (PMDC) 
motors are used in a variety of settings, including residences, commercial buildings, and the manufacturing industry. PMDC motors 
are currently being used in many applications ranging from everyday tasks to industrial tasks such as industrial	 machines, 
automobiles, and robotic applications. In this paper, we present the parameter estimation method of a low-cost PMDC motor using 
the Extended Kalman Filter (EKF). Each low-cost PMDC motor may have different dynamic and electrical properties such as back 
electromotive force, torque constant, rotor resistance, and friction coefficients. However, these parameters of the low-cost PMDC 
motor are not provided in the datasheet by its manufacturer. The main goal of this paper is to estimate the lumped parameters of 
PMDC motor used in differential-drive mobile robot and design controller for velocity control. SIMULINK software is used to simulate 
the estimation of the lumped parameters with EKF and then we implement it in real experiment estimation of the lumped parameters. 
The proportional-integral (PI) controller has been chosen for our feedback control system. Finally, we have found the simulation and 
real experimental results of three lumped parameters in a brief time. In the simulation results, the estimation values start to converge 
to true values in only 0.5 seconds, so the simulation and real experimental results confirm that the control is and well-perform. 

Keywords: Parameter estimation, PMDC mtor, PI controller, EKF, Velocity control 

 
1. INTRODUCTION1 

Nowadays, PMDC motors are very often used as actuators 
in electromechanical systems in industry and engineering. 
Because of their low price, compact size, continuous control 
feature, low voltage, or human safety, PMDC motors are 
commonly used to control the speed and position of household 
appliances, portable electronic tools, mobile robots, industrial 
machines such as printers, wipers, door openers in automobiles, 
and robot manipulators [1,2]. Due to these advantages, the 
velocity and position control of PMDC motors have received a 
lot of study in the literature. Most of the authors contribute 
models and proposed controllers. Then they make simulations 
and experiments with hardware to make the realization a reality. 

Most manufacturers who sell PMDC motors on the market, 
particularly low-cost units, do not provide all the dynamic and 
electrical parameters. These parameters, such as voltage and 
torque constants or rotor friction coefficients, have a large 
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tolerance. The information provided is basic, such as voltage, 
power, maximum speed, operating current, etc. It is difficult if 
we want to do precise control of the mentioned motor and need 
an expensive testing apparatus, and many testing cycles. So, a 
quick and effective system identification approach should be 
proposed. Many research works tried to identify these unknown 
properties such as the works shown in [3].  

Although most industrial control systems depend on PI 
controllers, most of these applications are nonlinear (temperature 
control), and PI tuning for nonlinear systems is difficult  [4]. On 
the other hand, Fuzzy PI controllers can be used for nonlinear 
systems, but they require good knowledge of the system for 
tuning. The estimation of motor parameters is also essential for 
condition monitoring, fault diagnosis, etc. However, the 
identification of non-linear dynamics is very complex, and the 
design of a controller requires accurate parameters to model the 
motor shown in [5]. Researchers have attempted different 
methods of parameter identification for various types of DC 
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motors. Different approaches are widely developed for 
parameter estimation of DC motors [6-10]. 

In this paper, the DC motor parameters estimation is 
considered nonlinear. When the speed of the motor changes, it 
also changes the current and resistance of the rotor as well as the 
friction constant. Friction is a nonlinear phenomenon that has 
been studied and modeled differently [11]. 

The main contribution of this work was improved parameter 
identification	 of	 the	 PMDC	 motor	 by	 using	 EKF	 on	 the	
velocity	 model,	 which	 is	 derived	 in	 terms	 of	 two	 lumped	
parameters.	Also,	by	using	the	root	locus	techniques,	which	
provide	the	whole	process	of	PD	position	feedback	control	
architecture	with	acceleration	and	velocity	feed	forward	as	
compensation	for	dynamic	reference	[12]. So we chose EKF 
for our research because of its remarkable ability to deal with 
nonlinear systems and its viability for implementation. We also	
proposed	 parameter	 identification	 of	 the	 PMDC	motor	 by	
using	EKF	on	the	velocity	model,	which	is	derived	in	terms	of	
three	lumped	parameters,	we	also	provided	the	full	process	
of	 PI	 controller	 design	 for	 velocity	 feed-forward	 as	
compensation	for	dynamic	reference.	

This	paper	is	organized	as	follows:	In	section	2,	showed	
the	model	PMDC	motor,	Extended Kalman Filter Algorithms 
and velocity	 using	 PI	 controller.	 EKF implementation, 
simulation results, implement EKF to real experiment and 
velocity tracking using PI	 controller	 are	 given	 in	 section	 3. 
Finally, the concluding remarks are presented in section 4.  

2. METHODOLOGY 

2.1 Model PMDC motor 

A PMDC motor is a component that consists of an electrical 
part and a mechanical part. The following PMDC motor model 
and controller design are derived from work as seen in [13]. 

 
Fig. 1. The schematic of PMDC motor  

For the electrical parts from Fig. 1 both the back emf and 
the electromagnetic torque depend proportionally on speed and 
current: 

 
𝑣!(𝑡) = 𝐾!𝜃̇(𝑡) = 𝐾!𝜔(𝑡)                  (Eq. 1) 
𝑇" = 𝐾#𝑖"(𝑡)	.                (Eq. 2) 
𝑣" = 𝐿"

$%!(#)
$#

+ 𝑅"𝑖" + 𝑣!	.              (Eq. 3) 

The inductance 𝐿"	in the armature circuit is assumed small 
and will be neglected in this paper; The equation (Eq. 3) 
becomes: 

𝑣" = 𝑅"𝑖" + 𝑣!                            (Eq. 4) 
where: 
𝑣!(𝑡)		=  voltage at terminal conductor of motor (V) 
𝐾!  =  back emf constant (V/rad. s()) 
𝜃̇ 	= 	𝜔		=  angular velocity of motor (rad/s) 
𝑇"  =  rotor torques (Nm) 
𝐾#  =  motor torque  
𝑖"  =  the current draw by the motor (A) 
𝑣"(𝑡)  =  input voltage from the power source (V) 
𝐿"		=  inductance 	in the armature circuit (H) 
𝑅"  =  the internal resistance of the armature (Ω) 

For mechanical part, we have the motor torque equation: 
𝑇" = 𝑇* + 𝐽𝜔̇(𝑡)                               (Eq. 5) 

𝑇*	is the torque that develops from Coulomb frictional 
torque 𝑇+, and coefficient viscous friction D. 𝑇* is defined as: 

𝑇* = 𝑇+𝑠𝑖𝑔𝑛[𝜔(𝑡)] + 𝐷𝜔(𝑡) .              (Eq. 6) 
where: 
𝑇+		=  coulomb friction torques (Nm) 
𝑇*		=  torque of coulomb friction and viscous friction (Nm) 
𝐷  =  coefficient viscous friction (Nm/rad. s()) 
	𝐽  =  moment of inertia of the motor (kgm,) 

Substituting (Eq. 6) into (Eq. 5), we obtain 

  𝐽𝜔̇(𝑡) + 𝑇+𝑠𝑖𝑔𝑛[𝜔(𝑡)] + 𝐷𝜔(𝑡) = 𝑇"	.      (Eq. 7)                    
Using (Eq. 1), (Eq. 2), and (Eq. 4), (Eq. 7) results in 

𝜔̇(𝑡) = −<-!./0"0#
-!1

=𝜔(𝑡) + 0"
-!1

𝑣" −

																															2$
1
𝑠𝑖𝑔𝑛>𝜔(𝑡)?.                (Eq. 8) 

where: 
a = <-!./0"0#

-!1
=   =  lumped parameter a (1/s) 

𝑏 = 0"
-!1

     =  lumped parameter b (rad/ s,/ 𝑣)  

𝑐 = 2$
1

     =  lumped parameter c (Nm/ kg.m,) 

2.2 Extended Kalman filter Algorithms  

The Extended Kalman Filter is a recursive algorithm which 
is used for calculating the optimal estimate of 𝑥C state x of the 
discrete stochastic nonlinear system as below. 

𝑥3/) = 𝑓$(𝑥3 , 𝑢3) + 𝑣3 , 

𝑦3/) = ℎ$(𝑥3/), 𝑢3/)) + 𝑤3/),                   (Eq. 9) 
where: 
𝑥3 = state	vector 
𝑢3 = input system 
𝑦3 =	observation	vector 
𝑓$ = nonlinear	functions of state vector 
ℎ$ = nonlinear	functions of measurement 
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𝑣3 =	process	noise	vector 
𝑤3=		measurement	noise	vector	
	
Initialize:	
𝑥C4|4 =	initial state estimation 
𝑃4|4 = position	definite	error	covariance matrix	
	
Time	Update:	

𝑥C3|3() = 𝑓$>𝑥C3()|3(), 𝑢3()?,  
𝑃3|3() = 𝐴3()𝑃3()|3()𝐴3()2 + 𝑄3(),         (Eq. 10) 

 
Measurement Update: 

𝑦C0|3() = ℎ$>𝑥C3|3(), 𝑢3?, 
𝑃67,3|3() 	= 𝑃3|3()𝐶32 , 
𝑃77,3|3()	 = 𝐶3𝑃3|3()𝐶32 + 𝑅, 
𝑥C3|3 	= 𝑥C3|3() + 𝑃67,3|3()𝑃77,3|3()() >𝑦3 − 𝑦C3|3()?, 
𝑃3|3 	= 	𝑃3|3() −𝑊3𝑃77,3|3()𝑊3

2 , 

From linearization of nonlinear function 𝑓$	and ℎ$ using 
Taylor series expansion, we get Jacobian matrix:  

𝐴3() = 𝐼 + 𝑇: 	
;*%
;6
Y
	6<6=&'(|&'(>&'(

,              (Eq. 11) 

where: 

𝑄3 = covariance 
𝑄+	=	process	noise	covariance	matrix 
R		 =	measurement	noise	covariance	matrix	
I  = identify matrix 
𝐴3()  = covariance	matrix.	

2.3 Velocity control using a PI controller  

Then the equation (Eq. 8) can be reduced to 

𝜔̇(𝑡) = −𝑎𝜔(𝑡) + 𝑏𝑣"(𝑡) − 𝑐𝑖𝑔𝑛>𝜔(𝑡)?	. (Eq. 12) 

The (Eq. 9) is a nonlinear state equation for the velocity 
model of a DC motor. The model can be numerically estimated 
by using EKF. From (Eq. 12), we can design block diagram for 
velocity model with PI controller as show in Fig. 2.

 
Fig. 2. Velocity model with PI controller 

Consider a velocity control architecture with the PI 
controller as shown in Fig. 2. The governing equation of the 
control system can be written as: 

𝑒̈? + >𝑎 + 𝑏𝐾@?𝑒̇? + 𝑏𝐾%𝑒? = 0                  (Eq. 13) 

From 2nd Order differential equation in standard form, we 
have: 

𝑋̈ + 2𝜁𝜔A𝑋̇ + 𝜔A,𝑋 = 0																		             (Eq.14) 

From (Eq. 13) and (Eq.14), we get: 

𝑎 + 𝑏𝐾@ = 2𝜁𝜔A 

𝑏𝐾% = 𝜔A, 

𝐾@ =
2𝜁𝜔A − 𝑎

𝑏  

𝐾% =
𝜔A,

𝑏  

From the equation above, we want 𝐾@ > 0. Thus, 2𝜁𝜔A >
𝑎, Then  𝜁𝜔A >

"
,
		to ensure stability. 

3. RESULTS AND DISCUSSION 

3.1 EKF implementation 

Here we use the EKF algorithm to estimate parameters a, b, 
and c of the velocity model: 

Let 𝑥) = 𝜔B:# , 𝑥, = 𝑎B:# , 𝑥C = 𝑏B:# , 𝑥D = 𝑐B:# , and 𝑥 =
[𝑥) 𝑥, 𝑥C				𝑥D]2  is the state parameter, input signal 𝑣" =
𝑢𝑘 = 10 sin(2𝜋 + 1.2𝑡)	(𝑟𝑎𝑑), 𝑇: = 0.01𝑠  ,	𝑄+ = 1𝑒 −
2 × 𝑑𝑖𝑎𝑔([1,10,10,10]) and R = 0.25, 𝑣3: 4 × 1 random 
process noise vector, 𝑤3: 4 × 1 random measurement noise 
vector. The velocity model (Eq. 12) is rewritten into the 
stochastic nonlinear system as processing and measuring model 
below. 

𝑥̇ = j

𝑥̇)
𝑥̇,
𝑥̇C
𝑥̇D

k = j
−𝑥)𝑥, + 𝑥C𝑢 − 𝑥D𝑠𝑖𝑔𝑛(𝑥))

0
0
0

k + l𝑄+𝑣(𝑡), 

(Eq. 15) 

𝑦3 = [1 0						0 0	] m

𝑥)
𝑥,
𝑥C
𝑥D

n

3

+	√𝑅	𝑤(𝑡), 

Discretize (Eq. 15) for the EKF algorithm, we obtain: 

𝑥3/) = m

𝑥)
𝑥,
𝑥C
𝑥D

n

3

+ 𝑇: j
−𝑥)𝑥, + 𝑥C𝑢3() − 𝑥D𝑠𝑖𝑔𝑛(𝑥))

0
0
0

k

3
+l𝑇:𝑄+𝑣(𝑡),		 

(Eq. 16) 

𝑦3 = [1 0						0 0	] m

𝑥)
𝑥,
𝑥C
𝑥D

n

3

+	√𝑅	𝑤(𝑡).																				 

The experiment ended after 3 seconds and the values settled to 
𝑎 = 26.63	(1/𝑠), 𝑏 = 17.26	(𝑟𝑎𝑑/𝑠,/𝑣) and 𝑐 = 6.776 (𝑁𝑚/
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𝑘𝑔.𝑚,). These values are used to compensate for the feed-
forward controller. We have shown that EKF could estimate the 
value of these parameters satisfactorily, with the largest error 
within 3% from the true value. 

 

 

 

 
Fig. 3. Simulation results for parameter estimation a, b, and c 

As shown in Fig. 3, the angular velocity estimation 𝜔B:# is 
start to converge to the angular velocity actual 𝜔"+#>"E at time 
0.3 seconds, while the error values are quickly approaching to 
zero value. We compare the angular velocity estimation 𝜔B:# 
with angular velocity actual 𝜔"+#>"E because we want to show 
that EKF estimates the values of angular velocity estimation 𝜔B:# 
satisfactorily and that it is converge to the angular velocity 
𝜔"+#>"E. Also, in Fig. 3 is shown the simulation result of 
parameter estimations a, b, and c with the tuning parameters of 
EKF. We see that the estimated parameters 𝑥, = 𝑎B:# , 𝑥C =
𝑏B:# , 𝑥D = 𝑐B:# , are starting to converge to the true values of 

26.63(1/𝑠), 17.26	(𝑟𝑎𝑑/𝑠,/𝑣) and 6.776 (𝑁𝑚/𝑘𝑔.𝑚,)  at the 
time of 3 seconds, respectively. 

3.2 Experiment lumped parameter estimation 

The device, which was built with a low cost PMDC motor, 
H-bridge driver, and Arduino Due microcontroller, are 
used for the experiment with hardware testing in MATLAB 
Simulink. The PMDC motor has gear ratio 19.2, optical encoder 
14 ppr and maximum voltage 24 V. The other parameters of the 
PMDC motor are unknown. The desired dynamic angular 
velocity is chosen as 𝑢𝑘 = 10 sin(2𝜋 + 1.2𝑡)	(𝑟𝑎𝑑)	for 
observation during the experiment. The desired velocity is 
mathematically calculated from the desired velocity.	
Compensation	for	dynamic	reference.  

 

 

 

 
Fig. 4. Experiment results for parameters estimation a,b and c 
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Fig. 4 shows the experiment ended after 3 seconds and the 
values settled to 𝑎 = 26.63	(1/𝑠), 𝑏 = 17.26	(𝑟𝑎𝑑/𝑠,/𝑣) and 
𝑐 = 6.776 (𝑁𝑚/𝑘𝑔.𝑚,). These values are used to compensate 
for the feed-forward controller. We have shown that EKF could 
estimate the value of these parameters satisfactorily, with an 
error maximum of 3% from the actual value.  

3.3 Velocity tracking using PI controller 

The control architecture in Fig. 2 is used for simulating and 
experimenting in Simulink for velocity control with PI 
controller. In this simulation with real experiment, we chose 
lumped parameters 𝑎 = 26.63	(1/𝑠), 𝑏 = 17.26	(𝑟𝑎𝑑/s,/𝑣) , 
𝜁 = 1;	𝜔A = 2 ∗ 𝜋 ∗ 4;	𝐾% =

?*+

!
= 36.5964; 𝐾@ =

,F?*("
!

=
1.3694; and input signal 𝑣" = 𝑢𝑘 = 10 sin(2𝜋 + 0.1𝑡)	(𝑟𝑎𝑑), 
𝑇: = 0.01	𝑠. For the feed-forward ensures that the input to the 
motor is always regulated based on the motor’s dynamic and 
electrical propertied. 

 
Fig. 5. Simulation results for velocity control architecture with PI 
controller 

 
Fig. 6. Simulation results velocity error between estimation and actual 
with PI controller 

Fig. 5 shows the simulation results of velocity control using 
PI controller. We see that the velocity 𝜔B:# is starting to converge 
to the actual velocity 𝜔"+#>"E at a time of 1 second while the error 
values are drastically falling to zero value, and the error between 
velocity estimate and actual has shown in Fig. 6. 

Fig. 7. Experiment results for velocity control with PI controller 
 

 
Fig. 8. Experiment results velocity error between estimation and actual 
with PI controller 

4. CONCLUSIONS   

In this research, we derive models of a DC motor with three 
lumped parameters a, b, and c for estimation by using EKF. To 
simplify the complexity of the parameter estimation, we 
approximate the models by ignoring the Coulomb frictional 
effect. EKF is a good method to estimate the lumped parameters 
a, b, and c of PMDC motors. It has accurately estimated these 
parameters. These values are used to compensate for the feed-
forward controller. We have shown that EKF could satisfactorily 
estimate the values of these parameters with a maximum error of 
3% from the actual value. Then, we use the three estimated 
parameters to design a PI controller for velocity control. In the 
parameter estimation, a dynamic reference is used to capture all 
possible physical properties of the motor. The real experiment 
was conducted. The experiment results show that the velocity 
error between estimation and actual with the PI controller is 
within 0.5 (𝑟𝑎𝑑/𝑠) from actual value. For future study, we will 
apply that work with simulation and real experiments with an 
adaptive PI controller for velocity control design. 
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