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Abstract: Quadcopters or quadrotors have always desired to fly smoothly and stay on their path in order to enhance their 
application. This better performance can be achieved depending on the accuracy of the data. However, relying purely on sensor 
data cannot be accepted due to the inaccuracy of measurement, thus state estimation to filter noise out is important.  This paper is 
focused on performance evaluation on quadrotors attitude estimation using Unscented Kalman filter (UKF) by comparison with 
quadrotors attitude computed from the mathematical model. The UKF is an algorithm dealing with noise filters that can be used 
for state estimation such as attitude and bias of sensors. UKF is divided into two steps which are Measurement Update, and Time 
Update. However, the algorithm is initialized by determining initially on the mean and the covariance. Then, the measurement 
update algorithm uses the accelerometer sensor data and magnetometer sensor data pose the next time update. Gaussian with 
covariance (Q and R) of the UKF algorithm are determined in this paper. Quaternion is used to describe state equations which are 
based on the kinematic model. The input of the state equation is taken from sensors of the Pixhawk 4 controller which are gyro 
meters (data of angular velocity). In addition, the output equation is based on accelerometer modeling and magnetometer modeling 
including data from accelerometer sensors and magnetometer in the Pixhawk 4 controller. MATLAB & Simulink have been used 
for this experiment and Pixhawk Controller hardware is used as the flight controller. The result of attitude estimation expressed 
about component of quaternions and bias of sensor from Pixhawk 4. The graph is shown the performance of attitude quadrotors 
and bias of sensor. 
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1. INTRODUCTION1 

Application quadrotor of remote sensing, direct 
geo-referencing and 3-D mapping [1] or constructing large 
image mosaics [2] and a key requirement is information of high-
fidelity aircraft attitude. Moreover, the application of airborne 
target tracking, noted that error is most sensitive to attitude 
uncertainty [3]. In recent years, low-cost inertial measurement 
units (IMUs) have been made by advances in 
micro-electro-mechanical systems (MEMS). However, these 
components have limited accuracy which does not make them 
adequate alone due to the accumulation of the sensor biases over 
time [4]. The high accuracy of the Global Positioning System is 
important. Velocity measurement from GPS has also led the 
researcher to develop a single GPS antenna-based attitude 
solution. A GPS receiver has well-known benefits and the 
functional integration of a low-cost Inertial Navigation System 

 
* Corresponding author: Vichetra Yi 
E-mail: vichetra_vi@gsc.itc.edu.kh; Tel: +855-81 499 114 

(INS) [5].The development of several GPS/INS formulations 
that vary in terms of the number of navigation states estimated 
[6] and the form of GPS information used for measurement 
updates [7]. 

State estimation as a means of checking instrument accuracy 
and data consistency is now used by many flight-test groups. 
Once a consistently smoothed set of time histories is obtained 
from the data, other analyses such as identification of stability 
and control derivative are readily performed. In fact, a relatively 
simple routine may be used for identification tasks, allowing the 
analyst freedom to develop a proper aerodynamic model. Since 
the data consistency had been extensively treated in the 
literature, it will not be discussed further here [8]. Instead, we 
will estimate the state of the aircraft that can measure from the 
sensor. 

The first flight of the experiment, the manual control mode, 
has been used to fly the quadrotors for the purpose of gathering 
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Fig. 1. Vector diagram for derivation of rotation formular 

sensor data such as three attitude angles [9].These data then 
would be used to be a case study for autonomous control loop 
design. The obtained signals or data from the sensors have a lot 
of vibrations due to the mechanical nature of the system and 
noise with bias due to the sensors themselves and environmental 
effects which as to be filtered to obtain their accuracy. The 
common solution in the literature is to use a kind of Kalman 
filter. 

The Unscented Kalman Filter (UKF), a member of the 
Linear Regression Kalman Filter family, attempts to remove 
some of the short-comings of the EKF in the estimation of 
nonlinear systems. The UKF is an extension of the traditional 
Kalman Filter for the estimation of nonlinear systems that 
implements the unscented transformation. The unscented 
transformation uses a set of samples, or sigma points that are 
determined from the a priori mean and covariance of the state. 
The sigma points undergo a nonlinear transformation. The 
posterior mean and covariance of the state are determined from 
the transformed sigma points [10].This approach gives the UKF 
better convergence characteristics and greater accuracy than the 
EKF for nonlinear systems [11]. 

This research topic is a specific problem noticed in the 
development of small prototypes of quadrotors which include 
sensors and hardware boards for purpose of experimentation. 
The onboard hardware and software have been designed for 
these quadrotors where the hardware includes an IMU that 
contains three-axis accelerometers, gyro meters, and 
magnetometers. The system is light and small enough to fly on 
quadrotors. 

This paper is organized into 4 sections. Kinematic 
modelling of attitude, modeling of sensors, and UKF algorithm 
are described in section 2. The result and discussion are shown 
in section 3. And section 4 is the conclusion.  

2. METHODOLOGY 

2.1 Attitude modeling 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

Let{𝐴} denoted by {�⃗�, �⃗�, 𝑧	} be the three coordinates axis 
unit vectors without a frame of reference. The attitude of the 
quadrotors has been described in the quaternion component. 
Rotation quaternion is derived based on the rotation formula as 
shown in Fig. 1.  

The initial position 𝑠 of the vector 𝑂𝑃-----⃗  and the final position 
𝑠′--⃗  is denoted by 𝑂𝑃′-------⃗ . The unit vector along the orientational axis 
is denoted by 𝑢-⃗ . Vector 𝑠 can be expressed as the sum of three 
vectors:  
 

        𝑠 = 𝑂𝑁------⃗ + 𝑁𝑄------⃗ + 𝑄𝑃-----⃗ 	.   
(Eq. 1) 

By  𝑢	---⃗ ∙ 𝑠   is the direct distance between points 𝑂 and 𝑃, so the 
vector 𝑂𝑁------⃗  can be written as follows:  
 

𝑂𝑁------⃗ = 𝑢	---⃗ 6	𝑢	---⃗ ∙ 𝑠!---⃗ 	7,                      
(Eq. 2) 

𝑁𝑃′-------⃗  can also be described as follow: 
 

𝑁𝑃′-------⃗ = 	 𝑠′--⃗ − 𝑂𝑁------⃗ = 	 𝑠!---⃗ − 𝑢	---⃗ 6	𝑢	---⃗ ∙ 𝑠!---⃗ 7,           
(Eq. 3) 

Therefore,  
 

         𝑁𝑄------⃗ = [𝑠!---⃗ − 𝑢	---⃗ 6	𝑢	---⃗ ∙ 𝑠!---⃗ );𝑐𝑜𝑠𝜙,                     
(Eq. 4) 

Magnitude of vector 𝑁𝑃′-------⃗  is the same as that of vector 𝑁𝑃------⃗  and 
	𝑢	---⃗ ∙ 𝑠!---⃗ . Thus, 𝑄𝑃-----⃗  can be expressed as  
 

              𝑄𝑃-----⃗ = 6𝑢	---⃗ ∙ 𝑠!---⃗ 7𝑠𝑖𝑛𝜙	.                           
(Eq. 5) 

Following Eq. 2, Eq. 3, and Eq. 4 combine into Eq. 1, together 
with a slight rearrangement of terms, leads to the rotation 
formula: 
 

𝑠 = 	 𝑠′--⃗ 𝑐𝑜𝑠𝜙 +	𝑢	---⃗ 6𝑢	---⃗ ∙ 𝑠!---⃗ 7(1 − 𝑐𝑜𝑠𝜙) +		𝑢	---⃗ × 𝑠!---⃗ 𝑠𝑖𝑛𝜙                              
(Eq. 6) 

Through the standard trigonometric relationships 
  

𝑐𝑜𝑠𝜙 = 2𝑐𝑜𝑠"
𝜙
2 − 1 

𝑠𝑖𝑛𝜙 = 2𝑠𝑖𝑛
𝜙
2 𝑐𝑜𝑠

𝜙
2 

1 − 𝑐𝑜𝑠𝜙 = 2𝑠𝑖𝑛"
𝜙
2. 

(Eq. 7) 
And the new quantities 
  

𝑒# = 𝑐𝑜𝑠
𝜙
2 

𝑒 = 𝑢-⃗ 𝑠𝑖𝑛
𝜙
2, 

(Eq. 8) 
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Let 𝑒# =	𝑞#, 𝑒 = [𝑞$, 𝑞", 𝑞%], and 𝑞 = [𝑒;	𝑒#]& are components 
of the quaternions.     
 
Based on Eq. 6 can be derived in a more useful for rotation 
quaternion form: 
  

𝑠 = (2𝑒#" − 1)𝑠!---⃗ + 2𝑒6𝑒&𝑠!---⃗ 7 + 2𝑒#𝑒 × 𝑠!---⃗ . 
 
Algebraic representation 
 

𝑠 = [(2𝑒#" − 1)𝐼 + 2𝑒𝑒& + 2𝑒#�̃�]𝑠!. 
 
Where 𝐼 is the identity matrix and �̃� is a skew-symmetric matrix 
 

�̃� = K
0 −𝑒% 𝑒"
𝑒% 0 −𝑒$
−𝑒" 𝑒$ 0

M. 

 
Finally, we can denote the transformation matrix from the 
component of the quaternion 
 

𝑅 =	 (2𝑒#" − 1)𝐼 + 2𝑒𝑒& + 2𝑒#�̃�. 
(Eq. 9) 

 
Attitude of quadrotors is used in the quaternion component, then 
we can derive state equations from Eq. 8  
 

�̇� = Ω(𝜔)𝑞, 
 
The propagated quaternion is found from the discrete time 
 

𝑞' = Ω(𝜔'($)𝑞'($, 
(Eq. 10) 

 
By   Ω(𝜔'($)  can be computed 
 

=	 R
cos(0.5‖𝜔'($‖∆𝑡) 𝐼 − [𝜓['($] 𝜓'($

−𝜓&
'($ cos	(0.5‖𝜔'($‖∆𝑡

\. 

 
Where 𝜓'($ = sin(0.5‖𝜔'($‖∆𝑡)𝜔'($/‖𝜔'($‖ , 	𝜔'($ is a 
component of angular velocity that be measured from a gyro 
meter and ∆𝑡 is the sampling time.  

In general, IMU sensors usually have a bias if we ignore the 
sensor-based MEMS. So, sensor fusion needs to estimate bias for 
the correct attitude estimate. We can be expressed by:  
Let 𝑏) is bias from accelerometer and assumption as a random 
walk (RW): 

𝑏)(') = 𝑏)('($) + 𝜂"	, 
(Eq. 11) 

Let 𝑏, is biased from gyro meter and  𝑏-). is bias from the 
magnetometer and assumptions as constant:  
 

𝑏,(') = 𝑏,('($) + 𝜂% 

𝑏-).(') = 𝑏-).('($) + 𝜂/, 
(Eq. 12) 

Therefore, following Eq. 10, Eq. 11, and Eq. 12, we can rewrite 
the state equation including bias from the sensor:  
 

⎣
⎢
⎢
⎡

𝑞'
𝑏)(')
𝑏,(')
𝑏-).(')⎦

⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡Ω
(𝜔)𝑞'($ +	𝜂$
𝑏)('($) + 𝜂"
𝑏,('($) + 𝜂%
𝑏-).('($) + 𝜂/ ⎦

⎥
⎥
⎥
⎤
. 

 
Where [𝜂$, 𝜂", 𝜂%, 𝜂/]& is noise. 
 𝑞 = 	 [𝑞#, 𝑞$, 𝑞", 𝑞%]& is a component of the quaternion 
 
2.2 Measurement equation 

In this section, we will describe the output equation or 
measurement equation for applying an Unscented Kalman filter. 

Acceleration has been measured by an accelerometer sensor 
in the body frame (in a step-down IMU configuration). Due to 
the equation of accelerometer is modeling in body frame: 
 

𝑎0-1 = 𝑅&(�̇� − 𝑔𝑧) + 𝑏) + 𝜂). 
(Eq. 14) 

Where 𝑏) is bias term, 𝜂) denotes additive measurement noise, 
and �̇� is acceleration in the initial frame. Here, the notation 𝑧 can 
be dealt with the algebraic expressions of coordinate axes 
throughout this section. Moreover, high vibration and mounted 
on a quadrotor have appeared from the accelerometer, so we 
require significant low-pass mechanical and/or electrical 
filtering to be usable. Most quadrotor avionics will incorporate 
an analog antialiasing filter on a MEMS accelerometer before 
the signal is sampled. 

Magnetometers provide the measurement of the ambient 
magnetic field 
  

𝑚0-1 = 𝑅&𝑀𝑎 + 𝑏- + 𝜂-. 
(Eq. 15) 

Where 𝑏- is bias in a body fixed frame expression for local 
magnetic disturbance,  𝑀𝑎 is the magnetic field vector expressed 
in the inertial frame, 𝜂- is usually highly noisy for 
magnetometer reading.  

2.3 Unscented kalman filter 

The dynamic system has been considered [12].The 
unscented transformation is an important part of the UKF, which 
uses a set of (2𝑛 + 1) sigma points to approximate the Gaussian 
posterior density and the Gaussian predictive density. 

Assemble the complete UKF as the followings: 

• Initialization 

Select any initial mean and its positive definite error covariance 
matrix 𝑥#|($ and  𝑃#|($respectively 



                                                                                       Yi et al./Techno-Science Research Journal 11(2) (2023) 15-21 

18 
 

 

• Time update 

Determined initial states 
𝑒 = 	𝑥m'($|'($(1: 3) 
𝑒# = 𝑥m'($|'($(4) 
𝑞m345 = [𝑒& , 𝑒#]& , 

And bias  
𝑏)('($) =	𝑥m'($|'($(5: 7) 
𝑏,('($) =	𝑥m'($|'($(8: 10) 

𝑏-).6('($) =	𝑥m'($|'($(11: 13). 
 

The inverse of 𝑞 is 𝑞m345($ = [−𝑒& , 𝑒#]& . 
After, we can be computed 

 

𝐴 =	s𝑃'($|'($,										(𝐴 = 𝑐ℎ𝑜𝑙(𝑃'($|'($,! 𝑙𝑜𝑤𝑒𝑟!)	 

𝛿𝑥m'($|'($ = [0,0,0, 𝑏)('($), 𝑏,('($), 𝑏-).6('($)]& 

𝛿𝑋z = 𝜕𝑥m'($|'($[1	 … 		1] + [07×$		𝐴	 − 𝐴]
1

𝑛 + 𝜆. 
Next, we are going to propagate in a close loop for a time update 

If  𝑖 = 1: 𝑛𝑠𝑖𝑔𝑚𝑎 

𝛿𝑞m'($|'($ = ~
𝛿𝑋z(1: 3,			𝑖)

s1 − 𝛿𝑋z(1: 3,			𝑖)&𝛿𝑋z(1: 3,			𝑖)
� 

𝑞m'($|'($ = 𝛿𝑞m'($|'($⨂𝑞m345 
𝑏)('($|'($) = 𝛿𝑋z(4: 6,			𝑖) 
𝑏,('($|'($) = 𝛿𝑋z(7: 9,			𝑖) 

𝑏-).6('($|'($) = 𝛿𝑋z(10: 12,			𝑖), 
𝑋z'($|'($(: , 𝑖) = [𝑞m&'($|'($, 𝑏

&
)('($|'($)	… 

𝑏&,('($|'($), 𝑏&-).6('($|'($)]& . 
𝑋z'|'($(: , 𝑖) = 𝑓96𝑢'($, 𝑋z'($|'($(: , 𝑖), 𝑇𝑠7, 
𝑒 = 𝑋z'|'($(1: 3, 𝑖)							; 𝑒# = 𝑋z'|'($(4, 𝑖) 

𝑏)('|'($) = 𝑋z'|'($(5: 7, 𝑖) 
𝑏,('|'($) = 𝑋z'|'($(8: 10, 𝑖) 

𝑏-).6('|'($) = 𝑋z'|'($(11: 13, 𝑖) 
𝑞m'|'($ = [𝑒& , 𝑒#]& 

𝛿𝑞m'|'($ = 𝑞m'|'($⨂𝑞m345
($ 

𝛿𝑒 = 𝛿𝑞m'|'($(1: 3) 
𝛿𝑋z'|'($(: , 𝑖) = [𝛿𝑒&'|'($, 𝑏&)('|'($)	… 

𝑏&,('|'($), 𝑏&-).6('|'($)]& . 
End 

 
So that, we can compute mean and covariance in time update 

𝛿𝑥m'|'($ = 𝛿𝑋z'|'($𝑊- 

𝜕𝑞m'|'($ = ~
𝛿𝑥m'|'($(1: 3)

s1 − 𝛿𝑥m'|'($(1: 3)&𝛿𝑥m'|'($(1: 3)
� 

𝑞m'|'($ = 𝛿𝑞m'|'($⨂𝑞m345 , 

𝑃'|'($ = 𝛿𝑋z'|'($𝑊𝛿𝑋z'|'($
& + 𝑄:𝑇;, 

𝑥m'|'($ = [𝑞m&'|'($, 𝛿𝑥m
&
'|'($(4: 6)	… 

𝛿𝑥m&'|'($(7: 9), 𝛿𝑥m&'|'($(10: 3)]& . 
•  Measurement update 

We have redetermined some parameters of the state equation: 
𝑒 = 𝑥m'|'($(1: 3),						𝑒# = 𝑥m'|'($(4) 

𝑏)('|'($) = 𝑥m'|'($(5: 7),	 
𝑏,('($|'($) = 𝑥m'|'($(8: 10), 

𝑏-).6('($|'($) =	𝑥m'|'($(11: 13), 
𝑞m345 = [𝑒& , 𝑒#]& , 

𝛿𝑥m'|'($ = [0,0,0, 𝑏)('($), 𝑏,('($), 𝑏-).6('($)]& . 
 

Then, we compute the sigma point 
 

𝐴 =	s𝑃'|'($	, 

𝛿𝑋z'|'($ = 𝛿𝑥m'|'($[1	 … 		1] + [07×$		𝐴	 − 𝐴]
1

𝑛 + 𝜆. 
Next, we are going to propagate in a close loop for a time update 

If  𝑖 = 1: 𝑛𝑠𝑖𝑔𝑚𝑎 

𝛿𝑞m'($|'($ = ~
𝛿𝑋z'|'($(1: 3,			𝑖)

s1 − 𝛿𝑋z'|'($(1: 3,			𝑖)&𝛿𝑋z'|'($(1: 3,			𝑖)
�, 

𝑋z'($|'($(: , 𝑖) =

⎣
⎢
⎢
⎢
⎡
𝛿𝑞m'|'($⨂𝑞m345
𝛿𝑋z'|'($(4: 6, 𝑖)
𝛿𝑋z'|'($(7: 9, 𝑖)
𝛿𝑋z'|'($(10: 12, 𝑖)⎦

⎥
⎥
⎥
⎤
, 

𝑌z'|'($ = ℎ9 �𝑋z'($|'($(: , 𝑖)�. 
End 

 
𝑦m'|'($ = 𝑌z'|'($𝑊𝑚 

𝑃<= = 	𝛿𝑋z'|'($𝑊𝑌z&'|'($ 
𝑃== =	𝑌z'|'($𝑊𝑌z&'|'($ + 𝑅 

𝐾' = 𝑃<=𝑃&== 
𝛿𝑋z'|' = 𝛿𝑋z'|'($ +𝐾'6𝑦' − 𝑦m'|'($7 

𝛿𝑞m'|' = ~
𝛿𝑋z'|'(1: 3)

s1 − 𝛿𝑋z&'|'(1: 3)𝛿𝑋z'|'(1: 3)
� 

𝑞m'|' = 𝛿𝑞m'|'⨂𝑞m345 . 
 
After that, we can find state estimation 
 

𝑥m'|' = [𝑞m&'|' , 𝛿𝑥m
&
'|'(4: 6)	… 

𝛿𝑥m&'|'(7: 9), 𝛿𝑥m&'|'(10: 3)]& , 
𝑃'|' = 𝑃'|'($ −𝐾'𝑃==𝐾&

' . 

Where 𝑛𝑠𝑖𝑔𝑚𝑎 = 2𝑛 + 1 is called the set of number sigma 
points. 𝑛 is number of states. 𝑊- is mean contraction weight and 
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𝑊:  is covariance contraction weight. 𝑊 is weight of UKF that 
can be computed from 𝑊: and 𝑊- [12]. Note that the 
computation of the square root of a matrix√𝑃, can be done using 
Cholesky factorization “chol(P)”. And ⨂ can be produced by: 

𝑎⨂𝑏 = ~

𝑎/ 𝑎%
−𝑎% 𝑎/

−𝑎" 𝑎$
𝑎$ 𝑎"

𝑎" 𝑎$
𝑎$ −𝑎"

𝑎/ −𝑎%
𝑎% 𝑎/

� �

𝑏$
𝑏"
𝑏%
𝑏/

�. 

3. RESULTS AND DISCUSSION 

The experiment is carried out by using MATLAB & 
Simulink. The hardware is Pixhawk 4 controller. The purpose of 
the simulation is to study the effects of sensor noise. Therefore, 
the model of the sensors focuses on these aspects:  

• The Gyro meter's signal is corrupted with noise. 
• Accelerometers are corrupted with noise and high 

frequencies. 
• Magnetometers are also corrupted with noise and high 

frequencies 

The parameter of the experiment given to the system is, 
sampling 𝑇𝑠	= 0.01s, sensors noise is a gaussian zero-mean with 
the standard deviation of 𝑄𝑐 and 𝑅 as shown in Table 1 and 2.	

Table 1  Parameter tunning of  𝑄𝑐 

parameter 𝑄𝑐 
Quaternion [10(> 10(> 10(>]& 
RW [10(? 10(? 10(?]& 
Bias Gyro meter [10(> 10(> 10(>]& 
Bias Magnetometer [10($$ 10($$ 10($$]& 

Table 2  Parameter tunning of  𝑅 

parameter 𝑅 
Accelerometer [10($ 10($ 10($]& 
Magnetometer [10($ 10($ 10($]& 

 

 

 

 

 

 
Fig. 2. Component of 𝑞! 

This is a result of 𝑞# component as expressed in Fig. 2. There 
are two lines in plotting that one is a red line label as 𝑞# obtained 
from estimation using UKF on the red line and the component 
from modeling computation on the blue line, respectively. We 
observed that at starting time, 𝑞# from estimation and 𝑞# from 
modeling, computation is stated to follow an initial condition in 
1. After we have tested for a long time 600second, we have seen 
that 𝑞# from modeling is drifting down at any time, while  𝑞# 
from estimation by using UKF is stable at the same time. This 
phenomenon can be explained by the fact that integration builds 
up noise over time and converts it to drift, which produces 
unfavorable outcomes [13]. 

 

 
Fig. 3. Component of 𝑞" 

 
Fig. 4. Component of 𝑞# 

 
Fig. 5. Component of 𝑞$ 
 

Three figures expressed in Fig. 3, Fig. 4, and Fig. 5 are result 
of attitude such as: 𝑞$, 𝑞", 𝑞%. If we refer to Euler angles, 𝑞$ refers 
to roll angle, 𝑞" refers to pitch angle, and 𝑞% refers to yaw angle. 
Each graph features two lines: a red line that represents data 
estimated using the UKF algorithm utilizing sensor fusion, and a 
blue line that represents data calculated using quaternion 
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modeling. In the performance of both comparisons, we can note 
that at starting time, 𝑞$, 𝑞", 𝑞% from estimation and 𝑞$, 𝑞", 𝑞% 
from modeling quaternion computation are following the initial 
condition [0, 0, 0]. After that, when we have tested for a long 
time in  600	𝑠𝑒𝑐𝑜𝑛𝑑, the performance of 𝑞$, 𝑞", 𝑞% from 
estimation and computation show that 𝑞$, 𝑞", 𝑞% from 
computation is starting to drift over, although we did not move 
the motion of the hardware while , 𝑞$, 𝑞", 𝑞% from estimation is 
stable. The time for experiment is 600	𝑠𝑒𝑐𝑜𝑛𝑑 because we want 
to observer the performance of state when they were working 
long time. The explanation for this phenomenon is that the 
integration accumulates the noise over time and turns the noise 
into drift, which yields unacceptable results (Abyarjoo, 2015).  
 

Fig. 6. Random walk accelerometer 
 

Fig. 6. illustrates the random walk of the accelerometer 
sensor. The performance of a good random walk estimation is 
between −0.2 to 0.2. The graph demonstrates that the line of  
𝑏)@, 𝑏)=, 𝑏)@ has been actively working to correct the estimation 
between time 160𝑠 - 180𝑠 and time 380𝑠 - 390𝑠 in order to 
correct the bias in the sensors because at that time, hardware 
created motion, so that random walk has been working hard to 
correct the estimation. These biases are not compensated for 
through the algorithm because of their negligible effect 
compared to the accelerometer biases. 

 
Fig. 7. Bias of Gyro meter 
 

The Pixhawk 4’s performance gyro rate bias is depicted in 
Fig. 7. The Pixhawk 4’s performance gyro rate bias is depicted 
in 𝑄 and 𝑅. The graph demonstrates that the line 𝑏,@, 𝑏,=, 𝑏,@ 
working diligently to correct the sensor’s bias between times  

160𝑠 - 180𝑠 and time 380𝑠 - 390𝑠 because during those 
intervals, the hardware generated motion, which made it difficult 
for the estimation of bias. These biases are not compensated for 
through the algorithm because of their negligible effect 
compared to the gyro rate biases. 

Fig. 8 represented about performance magnetometer bias of 
Pixhawk 4. For magnetometer, it creates a lot of bias that causes 
system error. However, after tuning parameters  𝑄 and 𝑅 the 
system stabilizes. The graph shows that the line of 𝑏-@, 𝑏-=, 𝑏-@ 
attempting to correct the sensor’s bias between time  160𝑠 - 
180𝑠 and time 380𝑠 - 390𝑠 because during those times, the 
hardware was creating motion, which made estimation of bias 
difficult. These biases are not compensated for through the 
algorithm because of their negligible effect compared to the 
magnetometer biases. 
 

 
Fig. 8. Bias of Magnetometerma 

4. CONCLUSIONS   

In this paper, the attitude of quadrotors estimation based on 
the UKF algorithm is proposed. The mathematical formulation 
of the problem has been presented in terms of the quaternion 
approach. State equation is used data by getting gyro meter 
(angular velocity). The measurement update algorithm uses the 
accelerometer sensor data, and the magnetometer sensor data 
pose the next time update. The experiment is conducted by 
testing with Pixhawk PX4 controller with MATLAB & 
Simulink. The result shows that the information attitude from 
estimation is not giving drift when the hardware is stable and the 
performance of biased that those result is useful for accuracy 
performance of quadrotor. Therefore, the result findings 
validated the proposed algorithm's UKF proper performance. 
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