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Abstract: For Hydrological and Meteorological research over Cambodia with sparsed rainfall gauges, reliable rainfall is essential. 
In this study,12 gridded rainfall datasets with a reasonable spatial resolution including Asian Precipitation Highly Resolved 
Observational Data Integration Towards Evaluation (APHRODITE), Gridded rainfall Observational Dataset for precipitation and 
temperature Southeast Asia (SA-OBS), Integrated Multi-gridded rainfall Retrieval for the global precipitation mission (GPM-
IMERG), Tropical Rainfall Measuring Mission Project (TRMM), Climate Hazards Group Infrared Precipitation  with Station data 
(CHIRPS-V2), Bias-Corrected Climate Prediction Center (CPC) Morphing Technique (CMORPH), JAXA Global Gridded rainfall 
Mapping Precipitation (GSMaP), Precipitation Estimation Remotely Sensed Information Artificial Neural Network (PERSIANN), 
PERSIANN Dynamic Infrared Rain Rate Near Real-Time (PERSIANN-PDIRNOW), PERSIANN Cloud Classification System 
(PERSIANN-CCS), PERSIANN Climate Data Record (PERSIANN-CDR), and Multi-Source Weighted-Ensemble Precipitation 
(MSWEP), were properly evaluated during 2000-2014 by using statistical metric and categorical metrics and comparing with 58 
local rainfall station data. At the same time, this study also set out to find which product could detect historical extreme rainfall 
events. The result shows that APHRODITE and GPM-IMERG are the better rainfall product reflecting the local rainfall in Cambodia. 
For the overall performance, APHRODITE is seen to be underestimated but has the highest correlation with station data. Meanwhile, 
GPM-IMERG shows a lower correlation than APHRODITE, but lower biases in variation magnitude. Well-known extreme indices, 
namely Consecutive Dry Day (CDD) and Consecutive Wet Day (CWD) of the Expert Team on Climate Change Detection and Indices 
(ETCCDI) were investigated as a showcase of extreme event detection. GPM-IMERG with an average bias of 29.87, and 
APHRODITE with an average bias of 31.85, in comparison to rainfall station data which indicates that GPM-IMERG is good at 
detecting extreme rainfall events compared to APHRODITE. Observabally, the following conclusions can be drawn from the analysis 
1) APHRODITE product can be utilized for gauged rainfall estimations in some sort of relative analysis application, like rainfall 
index transformation. 2)  GPM-IMERG is recommended for the study of extreme rainfall since it is capable of detecting light and 
heavy rainfall event magnitude.   
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1. INTRODUCTION1 

An extreme event is generally defined as the abnormal 
phenomena of weather or climate when its value is above or 
below a threshold. As climate differs from location to location, 
thus the definition of extreme events also depends on location. 
In addition, precipitation is one of the most common variables 
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used in climatic extreme research [1]. On top of that, El Niño and 
La Niña phenomena are well-known as one of the root causes of 
extreme events. The study of Gershunov and Bernett [2] 
mentioned that El Niño and La Niña influenced extreme rainfall 
in United State spatially. Also, the widespread flooding over the 
east coast of Peninsular Malaysia in December-January-
February is increasing during Moderate La Niña events [3]. 
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More than that, the study of ESCAP et al. [4] found that the 
2015-2016 El Niño event was one of the strongest and most 
significant on record where a large part of Asia and the Pacific 
experienced many extreme weather events. As well as, 1998-
2000 there was the presence of a strong La Niña [5].     

At the same time, analysis of such an extreme event above 
mentioned would be particularly problematic because lacking 
high-quality daily data observation which means there is a small 
amount of station data with a short length of available data and 
transcriptional errors that occur mostly when data is recorded or 
written incorrectly. Thus, gridded rainfall data were used in the 
study to fulfill and enhance the quality of the station data for 
accurate analysis and investigate the trends, or record any 
changes for as long as possible in a period. In addition, gridded 
rainfall data have their deficiency since they are not a direct 
estimate of rainfall station data, meaning that improvement and 
advancement of gridded rainfall products are needed. Keeping 
the product updated is the only way to fulfill the shortcoming. 
For instance, the APHRODITE project tries to keep their product 
updated to ensure they can complete their inadequacy [6]. 

In recent times there are so many gridded rainfall products 
that can access freely on the internet. However, not every 
product is fit for every location or region, so evaluating before 
choosing the product is crucial. Therefore, this study aims to 
investigate both the performance of each gridded rainfall product 
that would be suitable to be used in Cambodia and the ability to 
detect extreme rainfall events that have happened in the past. 

2. METHODOLOGY 

2.1 Dataset 

In this study, rain gauge data were obtained from the 
Mekong River Commission (MRC), and station Observation of 
the Department of Meteorology of the Ministry of Water 
Resource and Meteorology (MOWRAM) of Cambodia. There 
are 108 stations in total (Fig. 1), owning the fact that some 
stations are too close to each other and some are only recorded 
in short periods and even contain a lot of missing data. Since the 
study requires good-quality rain gauge data well distribute over 
Cambodia, quality checks on rain gauge stations are essential. 
Simultaneously, the period of the evaluation is from 2000-2014.   

According to geographical characteristics and topography, 
Cambodia’s territories are classified into three main natural 
regional classifications: plains, coastal, and mountainous. 
Hence, this evaluation is divided into three regions, including 
coastal, plateau and mountainous, and plain regions, 
respectively. Moreover, the combination of all stations from 
each region is required to see which product is generally fit to 
use in the whole country besides the specific regions. So the 
remains station for this study is 58 stations. 

 

Table 1  List of the 12 Gridded Datasets, S indicated Satellite-Based, 
G indicated Gauge-Based, R indicated Reanalysis 
 

Dataset Res. Data 
Source Source 

Asian Precipitation- 
Highly-Resolved 
Observational Data 
Integration Toward 
Evaluation of Extreme 
Event (APHRODITE) 

0.25 

G 
 
 
 

[7] 

Gridded rainfall 
observational dataset for 
precipitation and 
temperature Southeast 
Asia (SA-OBS) 

0.25 G [8] 

Integrated Multi-gridded 
rainfall Retrievals for the 
Global Precipitation 
Mission (GPM-IMERG) 

0.1. S [9] 

Tropical Rainfall 
Measuring Mission Project 
(TRMM) 

0.25 S [10] 

Climate Hazards Group 
InfraRed Precipitation with 
Station data (CHIRPS) 

0.05 S,G [8] 

Bias-Corrected Climate 
Prediction Center (CPC) 
Morphing technique 
(CMORPH) 

0.25 S [11] 

JAXA Global Gridded 
rainfall Mapping of 
Precipitation (GSMap) 

0.1 S [12] 

Precipitation Estimation 
from Remotely Sensed 
Information using 
Artificial Neural Networks 
(PERSIANN) 

0.25 S [13] 

PERSIANN - Dynamic 
Infrared Rain Rate near 
real-time (PDIR-Now) 

0.04 S [14] 

PERSIANN-Cloud 
Classification System 
(PERSIANN-CCS) 

0.04 S [15] 

PERSIAN-Climate Data 
Record (PERSIAN-CDR) 0.25 S [16] 

Multi-Source Weighted-
Ensemble Precipitation 
(MSWEP) 

0.1 S, G, R [17] 
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2.2  Evaluation method using gauge observation data 

Statistical and categorical metrics were employed for this 
evaluation to measure the performance of 12 gridded rainfall 
products. The gridded rainfall was evaluated in daily and 
monthly time series based on the user's needs or different fields.   

The statistical metrics include Root Mean Square Error 
(RMSE), Correlation coefficient (R), and Standard Deviation 
(SD). 

Categorical data (ordinal or nominal) are data that can only 
ever fall into certain categories categorical metric was 
determined using a 2 by 2 contingency (Table 1). 

The possible form of the categorical metric [18]  is the 
Possibility of Detection (POD), and False Alarm Ratio (FAR) 
[19]. The FAR specifies how often the gridded rainfall data 
detected rainfall when rain does not actually fall to the ground. 
Table 2  Contingency table to determine the possible conditions for 
detecting rainfall from gridded rainfall product and ground 
measurement 

Possible 
Combinations of Rain 

Detection 

Gridded rainfall 
Product Gauge data 

Hit (H) 
False (F) 
Miss (M) 
Null (X) 

Yes 
Yes 
No 
No 

Yes 
No 
Yes 
No 

 
Where H is hit (i.e., number of pixels that both of gridded 

rainfall and gauge data simultaneously detected the rainfall at the 
same location), F stands for false alarm (i.e., number of pixels 
that are recorded by gridded rainfall product as rainfall but not 
by the in-situ gauge), M is missed (i.e., number of pixels that are 
reported as rainfall by the ground gauge but not by the gridded 
rainfall sensor), and X refer to null or correct negatives (i.e., the 
number of pixels that are not recognized as rainfall for both 
gridded rainfall and ground-gauge).  

 Graphical representation of data might reduce the cognitive 
load of measurement analysis compared to the only numerical 
representation of data. Thus scatter plot, Taylor Diagram [20], 
and violin plot were chosen to be the graphical representation for 
the study.   

2.3 Extreme Rainfall Indice 

All selected gridded rainfall datasets are re-evaluated for the 
extreme rainfall event to ensure the ability to detect. Based on a 
subset of the Expert Team on Climate Change Detection and 
Indices (ETCCDI), extreme rainfall characteristics are included 
with intensity, frequency, and duration. At the same time, 
Consecutive Wet Days (CWD) and Consecutive Dry Days 

(CDD) were much more strong indices in terms of 
inconsistencies within the duration of extremes.  

CWD and CDD represent the number of consecutive wet 
days and consecutive dry days, respectively. For both indices, 
the precipitation threshold is 1 mm and the number of dry or wet 
periods exceeds 5 days. [21, 22] These two extreme precipitation 
indices were calculated using Climate Data Operators (CDO) 
software. (https://code.mpimet.mpg.de/projects/cdo/). 

At the same time, CDD and CWD calculations were also 
performed both on the station data and gridded dataset. After 
obtaining the result of CWD and CDD from station data and 
gridded data, RSME is the statistical metric were used to 
evaluate the average difference of CDD and CWD between 
rainfall station data and gridded data, The RMSE values are then 
used for comparison, to find gridded data suitable for analysis of 
extreme rainfall in Cambodia. 

3. RESULTS AND DISCUSSION 

3.1 Evaluation of gridded rainfall data 

The purpose of the study is to investigate the gridded 
product's performance, which adds up to the ability to detect 
extreme rainfall events over Cambodia, thus the combination of 
each station data from 3 divided regions is significant.  After the 
quality check, there are 3, 9, and 46 gauge station data for 
coastal, plateau, mountainous, and plain areas, respectively, 
meaning that there are 58 stations after the combination. 

 12 gridded data were extracted into calculatable data, this 
implies that from gridded data to excel data, after all, station data 
and gridded data obtained are in the form of excel so statistical 
metrics and categorical metrics can be calculated. 

Taylor diagram shows the evaluation of gridded rainfall data 
through correlation, standard deviation, and RMSE between 
rainfall station data (Fig. 2). The diagram shows the ability of 
gridded rainfall datasets in estimating the rain gauge station data. 
The dissimilarity between gridded rainfall data and observation 
data is shown in Fig. 2. In terms of higher-ranking efficiency in 
correlation and RMSE, ensemble-based and gauge-based 
gridded rainfall dataset (MSWEP and APHRODITE) is 
remarkably high. 

Among all gridded rainfall datasets, APHRODITE has the 
highest correlation (> 0.7) and is closer to the lower RMSE. 
Also, the gauge-based dataset (MSWEP) is ranked after 
APHRODITE with a correlation of 0.4 and closer to lower 
RMSE. On top of that, the satellite-based rainfall dataset (GPM-
IMERG) shows a correlation of 0.4 as well with a reasonable 
RMSE value (1<RMSE<1.5).  

Since standard deviation provides variation magnitude of a 
time series (a fluctuation around the mean value), gauge-based 
and ensemble-based rainfall dataset (APHRODITE and 
MSWEP) is more likely to underestimate the observed 
magnitude compared to GPM-IMERG (Fig. 2).  

 

https://code.mpimet.mpg.de/projects/cdo/
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Fig. 2. Taylor diagram of the median for all stations. The green contours 
indicate the RSME value which shows the difference between the 
gridded datasets and station data corresponding to the distance of the x-
axis. 

Violin plot is a method of plotting numeric data showing the 
data distribution that can convey the information provided by 
box plot (median, mean, interquartile range) and probability 
density of the data into one plot.  

In terms of categorical metrics for this evaluation, a rainfall 
event occurred if the amount of rainfall is more than or equal to 
1 mm.  See [19, 23] for the detailed description and application 
of this metric in model evaluation. Additionally, Hit Rate is a 
categorical metric, that conveys information about the ability of 
the dataset or model in detecting rainfall events defined by a 
specific threshold (1 mm in this current study). 

Fig. 3 shows the violin plot of hit rate for all the stations 
used in this evaluation. 

The plot indicates that the gauge-based and ensemble-based 
gridded dataset (APHRODITE, MSWEP) perform better in this 
metric, while PERSIANN-PDIRNow and PERSIANN-CDR are 
ranked after, followed by GPM-IMERG.  

In summary, a gauge-based dataset, an ensemble-based 
dataset, and a satellite-based dataset are considered to be suitable 
for Cambodia, namely APHRODITE, MSWEP, and GPM-
IMERG. 

In terms of correlation coefficient and hit rate, 
APHRODITE is ranked first among the other datasets, followed 
by MSWEP. However, these two gridded datasets underestimate 
the observed variation magnitude (lower standard deviation), 
which could be problematic in detecting the magnitude of the 
extreme rainfall event. Meanwhile, GPM-IMERG shows a better 
estimation of the observed variation magnitude, even though its 
correlation is lower than the above two datasets. 

 

 
Fig. 3. Violin plot of the Hit Rate for all stations 

3.2 Application for extreme rainfall analysis 

Ensuring the ability to detect extreme rainfall events of the 
gridded dataset is crucial. So, to compare the detecting skill of 
the gridded data, RMSE is used to evaluate the bias of the 
gridded dataset compared to rainfall station data where the 
smaller the RMSE score is the better for detecting extreme 
events with regards to CDD and CWD.   

The overall average difference of CDD and CWD of gridded 
rainfall data was calculated under the condition of perceiving the 
suitable gridded dataset for extreme rainfall analysis over 
Cambodia. 

For the biases of CDD, among 58 stations, there are 46 
stations where APHRODITE is better than GPM-IMERG in 
RMSE (Fig. 4), and the average RMSE of GPM-IMERG and 
APHRODITE are 45.549 and 41.209 respectively, Hence, 
APHRODITE works well for CDD index, while GPM-IMERG 
seems to have a hard time detecting. 

In Fig. 5, there are 51 stations where GPM-IMERG is better 
than APHRODITE in detecting CWD. The average RMSE score 
of APHRODITE and GPM-IMERG are 22.497 and 14.193, 
respectively. In other words, GPM-IMERG detects CWD well 
with lower RMSE scores compared to APHRODITE. 

Between APHRODITE and GPM-IMERG, to get only the 
best-gridded product for extreme rainfall analysis, so the average 
RMSE among CDD and CWD results was calculated in each 
dataset. The average calculation indicates that GPM-IMERG 
contains an overall bias of 29.87, while APHRODITE contains 
overall bias of 31.85. Thus, GPM-IMERG can capture the CDD 
and CWD with lower overall bias than APHRODITE.. 

After the above investigation, we further check the 
performance of both datasets in capturing CDD and CWD during 
specific drought and flood years. The results of this analysis are 
shown in Figs. 6-9 and Figs. 10 and 11. 
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Fig. 4. RMSE of consecutive dry days for each rainfall station.   

The study by Guo et al. [24] mentioned that Lower Mekong 
River Basin (LMB) experienced four severe droughts during the 
last three decades with the driest one in 2015-2016 with drought-
affected areas up to 75.6%, meanwhile, Cambodia is one among 
LMB countries. More than that, the El Niño that began in 2015 
hit hard, causing a two-year drought (2015-2016) that danger 
health, food security, and finance of millions of people [25, 26]. 
So the CDD is calculated in the year 2015 for both gridded 
rainfall products (APHRODITE and GPM-IMERG) to 
investigate which one is capable to capture this extreme event.   
       Fig. 6 and Fig. 7, are the map of CDD in 2015 for 
APHRODITE and GPM-IMERG, respectively. The result shows 
that the minimum dry day and maximum dry days of 
APHRODITE are 15 and 68 days, respectively. While the 
minimum and maximum dry days of GPM-IMERG are 4 and 
128 days, respectively. If compared station data (Fig. 10), only 
GPM-IMERG can capture the CDD of value more than 80 days 
(yellow color scale) as in station data. Thus, GPM-IMERG was 
better at detecting light rain than APHRODITE in case of dry 
spell in 2015. This is because GPM-IMERG uses a wider range 
of microwave frequencies, which makes it more sensitive to light 
rain. Additionally, GPM-IMERG has a higher spatial resolution 
than APHRODITE, which allows it to better resolve small-scale 
rainfall events. 

In late September 2011 considered one of the highest floods 
in a decade and over 1.64 million people were affected by the 
flood. In the first week of October, the Royal Government of 
Cambodia declared that the heavy flood affected 18 out of 24 
provinces.In addition, [27] mentioned that the 2010-2011 La 
Niña was one of the most intense, and the flood affected millions 
of people. 

As a direct consequence, CWD is calculated in the year 
2011, to see which gridded product is capable to capture this 
extreme event. Figure 8 and Figure 9 show the result of CWD in 

2011 for APHRODITE and GPM-IMERG, respectively. 
APHRODITE (Fig. 8) shows higher CWD values (more than 60 
days) from central to the northeastern parts of the country, while 
GPM-IMERG shows lower values (less than 40 days). If we 
check with station data (Fig. 11), GPM-IMERG shows closer 
values of CWD to station data then APHRODITE. This indicates 
the better performance of GPM-IMERG in capturing the CWD 
in 2011. 

 
Fig. 5. RMSE of consecutive wet days for each rainfall station. 

 
Fig. 6. Consecutive dry days for APHRODITE product. 

The study by Sunilkumar et al. [28] stated that between 
GPM-IMERG and APHRODITE, there is a close interaction at 
rainfall intensity but GPM-IMERG seems to be improved in 
detecting light/heavy rainfall event magnitude.    
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Fig. 7. Consecutive dry days for GPM-IMERG product. 

 
Fig. 8. Consecutive wet days for APHRODITE product. 

 
Fig. 9. Consecutive wet days for GPM-IMERG product. 

 

Fig. 10. Number of consecutive dry days, X indicated the number of dry 
days. 

 

Fig. 11. Number of consecutive wet days, X indicated the number of 
wet days. 

4. CONCLUSIONS   

Under the influence of climate change, it is believed that 
both the frequency and intensity of extreme rainfall would rise 
globally. Cambodia has been experiencing extreme rainfall 
which has led to floods and drought, like many other countries 
of the world. Likewise, extreme rainfall assessment is imperative 
to maintain the prevention and mitigation of any kind of disaster 
that happens in the future. This task requires suitable observed 
rainfall dataset so that the extreme rainfall event can be captured 
on the local scale.   

In this study, 12 gridded rainfall datasets were properly 
evaluated. As a result, APHRODITE and GPM-IMERG are the 
best rainfall products for Cambodia, with APHRODITE having 
the highest correlation with station data despite being 
underestimated, and GPM-IMERG having lower biases in 
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variation magnitude despite a lower correlation than 
APHRODITE.  

Well-known extremes, namely Consecutive Dry Days 
(CDDs) and Consecutive Wet Days (CWDs) from ETCCDI have 
been studied as a demonstration. The detection of extreme 
events. Computationally, GPM-IMERG has an average bias of 
29.87 and APHRODITE has an average bias of 31.85, compared 
with rain gauge data, indicating that GPM-IMERG is effective 
in detecting extreme rainfall events compared to APHRODITE. 

In general, APHRODITE is used for rainfall analysis, like 
index transformation. GPM-IMERG is ideal for studying 
extreme rainfall as it detects light and heavy rainfall well. 

The short length of the time series of this study from 2001-
2015 is considered a short period for extreme analysis and it is 
recommended to have at least 30 years of time series for this 
extreme rainfall study. Besides that, for a trustworthy and 
accurate evaluation, the division between gauge-based products 
and satellite-based products should be considered for future 
study.   
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