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Abstract: Time series forecasting is a well-established research domain, particularly in finance and econometrics, with a multitude 
of methods and algorithms proposed to achieve accurate future trend predictions. This study aims to examine the effectiveness of two 
popular models, ARIMA and LSTM, for predicting trends in gold prices in finance and econometrics. Monthly global gold prices 
from January 2010 to December 2022 are analyzed, with a training set from January 2010 to December 2020, a validation set of 12 
months randomly selected from the training set, and a test set from January 2021 to December 2022. The results show that the LSTM 
model with a forget gate cell at 600 epochs yields the highest accuracy in term of RMSE, MAPE and SMAPE, surpassing all other 
models, including the ARIMA model. The study also suggests that increasing the number of epochs beyond 600 does not lead to 
significant improvements in the LSTM model's performance. While the ARIMA model is simpler to implement and requires less time 
for parameter tuning and training, it is less accurate than the LSTM model. Incorporating a peephole connection to the LSTM cell 
does not improve the model's accuracy or training speed. The study's outcomes provide valuable insights into optimal practices for 
gold price prediction, with implications for decision-making and risk management processes. 
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1. INTRODUCTION1 

Time series analysis utilizes mathematical techniques to 
investigate sequential data collected at regular intervals over 
time. It has broad applications in multiple fields, including 
finance, economics, retail stock, healthcare, and environmental 
studies. The three key components of time series data, namely 
the trend, seasonality, and residual, are crucial for achieving 
accurate data interpretation and comprehension [1]. The 
examination of time series data enables the identification of 
patterns and information, which can be utilized to enhance the 
precision of forecasting through statistical techniques and 
mathematical models [2]. In this research article, we will study 
time series analysis on the gold price to forecast and conduct 
empirical investigations on the gold price based on the auto-
regressive integrated moving average (ARIMA) model and 
compare it with the long-short term memory (LSTM) model.  

Gold is a significant commodity exchanged incessantly 
throughout history [3]. Even a marginal enhancement in gold 
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prediction methodologies can result in substantial profits [4]. 
Despite the pandemic disruptions, gold has remained a stable 
"safe haven." [5]. The Autoregressive Integrated Moving 
Average (ARIMA) model has been widely employed for time 
series forecasting to predict gold prices [6-8] evaluated several 
forecasting methods including Random Walk, Exponential 
Smoothing State Space Model, ARIMA, and Vector 
Autoregression to predict gold prices for 24 months. Their 
findings showed that ARIMA had the highest accuracy with an 
RMSE of 95.70. With the surging prominence of deep learning, 
scholars have utilized Long Short-Term Memory (LSTM) 
models for time series forecasting and have emphasized the 
significance of considering LSTM hyperparameter sensitivity 
[9-11]. These studies have also employed LSTM models with 
peephole connections to explore multivariate forecasting and the 
summarization of letters in text [12-14]. Expanding upon 
previous studies, our research will utilize the ARIMA model, 
LSTM model with forget gate cell, and LSTM model with 
peephole connection gate cell to investigate the implementation 
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of univariate time series forecasting. We will then carry out an 
empirical analysis of our results. 

The paper will be partitioned into five discrete sections, 
each of which will perform a distinctive function. The first 
section will furnish a comprehensive outline of the research. The 
second section will explicate the methodology utilized to execute 
the research, and the third section will focus on the examination 
and interpretation of the outcomes derived from the experiments 
performed. The final section will proffer a definitive synopsis of 
the discoveries made and possible areas for future investigation. 

2. METHODOLOGY 

2.1.  Dataset 

In the context of our empirical inquiry, we intend to study 
the mean monthly gold price emanating from the London 
Bullion Market Association [15] over a span of 13 years, 
commencing from 2010 and culminating towards the end of 
2022 as shown in Fig. 1. 

 

 
Fig. 1. Average monthly gold price from 2010 to 2023. 
 

The 156 observations will be divided into a training and test 
set for an investigation based on prior research. The data depicts 
non-stationarity, requiring the use of gold price data from 2010 
to 2021 as the training dataset, with 12 random observations as 
the validation set, and gold price data from 2021 to 2023 as the 
testing dataset. Standardization scaling will be conducted on the 
training set to optimize model accuracy [16-17]. 

2.2.  Conceptual model and processing 

The ARIMA model is a classical linear statistical model 
that predicts linearly future observations based on past 
observations [18]. The model is a composition of an 
Autoregressive (AR) process and a Moving Average (MA) 

process, producing an Autoregressive Moving Average 
(ARMA) model, which assumes stationarity [19]. The ARIMA 
model extends the ARMA model by incorporating an integrated 
term "I," which transforms the non-stationary series into a 
stationary one through differencing [20]. 

 
 (Eq. 1) 

Eq. (1) represents ARMA(p,q) model equation, where xt is 
a stationary variable, c is a constant, ϕi represents autocorrelation 
coefficients at lags 1 to p, εt is a Gaussian white noise with zero 
mean and variance σε2 (>0), θi denotes weights applied to 
current and previous values, and θ0 = 1 and θi ≠1. By performing 
differencing to attain a stationary series with order d, the ARMA 
model is transformed into an ARIMA(p,d,q) model, with p, d, 
and q as its three parameters. 

2.2.1 Augmented Dickey-Fuller Test (ADF) 
 

The Augmented Dickey-Fuller (ADF) test, denoted by Eq. 
(2), to address non-stationary sequential data caused by a unit 
root in univariate time series. 
 

 (Eq. 2) 
 

In Eq. (2), Δ symbolizes the difference operator, β 
represents the trend coefficient, and μt denotes the white noise. 
The ADF test includes an AR(p) process with lagged p, as 
illustrated in Eq. (2), with the test statistic computed through 
OLS regression of the coefficients γ in the equation. The ADF 
test hypotheses are H0: γ = 0, indicating a unit root within the 
series, and HA: γ < 0, the alternative hypothesis. However, the 
ADF test is sensitive to lag order in finite samples, which can 
result in lag adjustment issues [21]. 

 
Table 1 Integral square error (ISE) rating 
 

Rating ISE Value 
Excellent < 3.0 
Very good 3.0-6.0 
Good 6.0-10.0 
Fair 10.0-25.0 
Poor > 25.0 

2.2.2 Kwiatkowski–Phillips–Schmidt–Shin Test (KPSS) 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 
assesses stationarity in time series data with the test statistic 
expressed by Eq. (3). 
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where a consistent estimator, estimates the residuals' long-run 
variance, σ2. The cumulative sum of deviations from the time 
series trend, S, represents the test's integral component, while N 
denotes the number of observations. The comparison of the unit 
root test outcomes can facilitate the comprehension of the series' 
stationarity properties. When the ADF test fails to reject the null 
hypothesis, and the KPSS test rejects it, the non-stationarity of 
the series is more credible [22]. 
 
2.2.3 Bayesian Information Criterion (BIC) 
 

The Bayesian Information Criterion (BIC) or Schwarz 
criterion selects the best model by penalizing the number of 
parameters to avoid overfitting. The BIC value is given by Eq. 
4, where k denotes the number of parameters and 𝜎"!" is the error 
variance, calculated using Eq. 5 with n representing the model's 
observations. 

 
 (Eq. 4) 

 (Eq. 5) 

  
In Eq. 5, 𝑥#	represents the actual observation, while 𝑥̅$ is the 

forecasted value by a specific ARIMA model for the 
corresponding lag i. The model with the smallest BIC value is 
chosen [23].  

2.3 Long short-term memory 

In the second part of our experiment, we will use the LSTM 
algorithm, a type of RNN, to forecast gold prices. We will 
employ two LSTM architectures, LSTM with forget gate and 
LSTM with peephole connection, to address the issue of 
vanishing and exploding gradients during training, as described 
by [24]. 

2.3.1 Long short-term memory with forget gate 

Despite the Long Short-Term Memory (LSTM) model's 
success in mitigating the issues of vanishing and exploding 
gradients in Recurrent Neural Networks (RNNs), it suffers from 
the inability to reset the internal state, resulting in network 
breakdown. To overcome this limitation, an LSTM model 
incorporating a forget gate was proposed. In our experimental 
setup, we employ the LSTM cell incorporating a forget gate, as 
illustrated in Fig. 2. The LSTM cell consists of three gates, 
namely the forget gate, input gate, and output gate, as depicted 
in the figure. 

The computation within each LSTM cell can be expressed 
using Eq. 6 through Eq. 11, where the symbols W, b, σ, and tanh 
denote the weights, biases, sigmoid, and tan-hyperbolic 
functions, respectively. Furthermore, the symbols it, ft, ht, and ot 
represent the input gate, forget gate, hidden state, and output 
gate, respectively, at a given timestamp t.  

 
 
Fig. 2. LSTM with forget gate cell architecture. 

 
  (Eq. 6) 

  (Eq. 7) 
 (Eq. 8) 

   (Eq. 9) 
  (Eq. 10) 

   (Eq. 11) 
 

2.3.2 Long short-term memory with peephole connect 

Felix A. Gers et al. [25] proposed a peephole connection 
from the previous cell state in the input to improve the LSTM 
model's performance. Fig. 3 shows the LSTM cell architecture 
with a peephole connection. 

 

 
Fig. 3. LSTM with peephole connection cell architecture. 
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 (Eq. 13) 
 (Eq. 14) 

   (Eq. 15) 
 (Eq. 16) 

   (Eq. 17) 
 
The primary difference between the peephole and forget 

gate LSTM cells is the inclusion of the previous cell state in the 
forget gate, input gate, and output gate. The LSTM cell's 
mathematical representation using Eq. 12 through Eq. 17 is 
possible based on the Fig. 3 illustration. Here, W and b denote 
the weights and bias, respectively, while σ and tanh signify the 
sigmoid and tan-hyperbolic activation functions. P denotes the 
coefficient of the peephole connection from the previous cell 
state to the respective gate at a given time t. 

2.4 Model evaluation metrics 

This study will assess the model's effectiveness using the 
root mean square error (RMSE), mean absolute percentage error 
(MAPE), and symmetric mean absolute percentage error 
(SMAPE) metrics to ensure a fair comparison. 

 

 (Eq. 18)  

 (Eq. 19)  

 (Eq. 20)  

 
RMSE, expressed in Eq. 18, is useful in identifying outliers 

and quantifies the difference between actual and forecasted 
values. MAPE, computed using Eq. 19, represents an alternative 
metric for evaluating regression models, similar to a weighted 
Mean Absolute Error (MAE) regression. SMAPE, introduced as 
a solution to MAPE's unboundedness, is expressed in Eq. 20, and 
produces symmetrical errors in asymmetric forecasting ranges, 
avoiding the generation of unbounded, extremely large, or 
infinite errors commonly associated with MAPE. Additionally, 
SMAPE is more resilient to outliers, assigning less weight to 
them relative to other measures that lack error thresholds [26-
27]. 

3. RESULTS AND DISCUSSION 

3.1.  ARIMA model parameters estimation 

We conducted ADF and KPSS tests on the dataset to 
determine unit roots and stationarity.  

 
Table 2. ADF and KPSS test results on the training set 

Stationary Test ADF Test  KPSS Test 
d = 0  d = 1  d = 0 d = 1 

Statistics -1.585 -4.513  0.551 0.122 
p-value 0.491 0.0002  0.030 0.100 

Critical 
values 

1% -3.474 -3.475  0.739 0.739 
5% -2.880 -2.881  0.463 0.463 
10% -2.577 -2.577  0.347 0.347 

 
The results in Table 1 show that the training dataset has a 

unit root when using zero order difference, but is stationary when 
using first-order difference (d=1), as indicated by the rejection 
of the null hypothesis in ADF test and acceptance of the 
alternative hypothesis in KPSS test at a 5% significance level. 
Therefore, we opt for the model's first-order difference. 

 
Table 3. BIC values for ARIMA model at first differences 

d = 1 MA(0) MA(1)  MA(2) MA(3) MA(4) 
AR(0) -9.63 -14.84 -10.19 -6.572 -4.599 
AR(1) -13.93 -12.12 -9.37 -4.94 -0.42 
AR(2) -9.58 -9.66 -4.41 -0.59 4.18 
AR(3) -5.04 -4.82 -0.56 -2.73 2.03 
AR(4) -0.66 0.11 4.45 1.05 10.70 

 
Table 2 displays the Bayesian Information Criterion (BIC) 

values for various ARIMA models at the first-order difference. 
The preferred model is ARIMA(4,1,1) with a BIC value of 0.11.  

 
Fig. 1 Autocorrelation and Partial Autocorrelation plot 
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The autocorrelation (AC) and partial autocorrelation (PAC) 
plots of the series are presented in Fig. 4. The plot includes the 
first-order differencing plot, AC plot, and PAC plot of the series. 
The AC plot shows a cut-off at lag 1, and the PAC plot displays 
decay at lag 4, supporting the model selected using the BIC 
values from the grid search method. Thus, the optimal 
forecasting model will be ARIMA(4,1,1).   

3.2 LSTM model parameters estimation 

This research aims to optimize the Long Short-Term 
Memory (LSTM) model by tuning hyperparameters, including 
the number of layers, hidden layers per cell, and learning rate. 
The LSTM model will be trained using an NVIDIA RTX 3050Ti 
with 4GB of RAM, PyTorch, and the Adam optimizer with a 
learning rate of 0.01. Data preprocessing will be carried out on 
an AMD Ryzen7 5800h CPU with 8 cores and 16GB of RAM, 
utilizing a batch size of 24 and shuffling facilitated by the 
PyTorch data loader. 

 

 
Fig 2. LSTM Network with 3 LSTM Layers. 

Fig. 5 shows a model architecture with 3 LSTM layers. The 
number of LSTM layers will be determined through a tuning 
process that explores LSTM architectures with forget gate and 
peephole connections, depicted in Fig. 2 and 3, respectively. 
Each LSTM cell contains 6 neurons, and the tuning process 
spans from 1 to 4 layers over 1200 epochs [28], with a learning 
rate of 0.01 during layer and hidden neuron tuning. Fig. 6 
displays validation set cost across epochs for various numbers of 
LSTM layers. 

The validation cost results for various numbers of Long 
Short-Term Memory (LSTM) layers are depicted in Fig. 6. The 
4-layer LSTM network, utilizing the LSTM forget gate cell, 
demonstrated the lowest validation cost at roughly 900 epochs. 
However, the 3-layer LSTM network, utilizing the peephole 
connection LSTM cell, demonstrated the lowest validation cost, 
but at around 600 epochs. 

Fig. 7 illustrates the use of a four-layer LSTM model with 
an LSTM forget gate cell and a three-layer LSTM model with 
peephole connection LSTM cell, where the number of hidden 
neurons is varied (3, 6, 9, and 12). At 800 epochs, the LSTM 
model with an LSTM forget gate cell and 6 hidden neurons has 

the lowest validation cost, while the LSTM with a peephole 
connection LSTM cell and 9 hidden neurons has the lowest 
validation cost. Hyperparameter optimization was then 
conducted to determine the optimal learning rate for both models 
based on the validation cost, with the learning rate ranging from 
0.1, 0.01, 0.001, and 0.0001 on the Adam optimizer. The optimal 
learning rate was chosen based on the lowest validation cost.  
 

 
Fig. 3. Cost validation set by epoch in different LSTM layers. 

 

 
Fig. 4. Cost of Validation set by varying number of Neurons in LSTM 
cell. 

Fig. 8 demonstrates that a learning rate of 0.01 yields 
optimal performance for both LSTM models. The LSTM model 
with LSTM forget gate cell comprises four layers with nine 
hidden neurons and the same learning rate, while the LSTM 
model with LSTM peephole connection cell consists of three 
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layers with nine hidden neurons and the same learning rate. In 
the hyperparameter fine-tuning process, Fig. 6 recommends 
training for 600 and 900 epochs, Fig. 7 recommends 800 epochs, 
and Fig. 8 suggests around 800 epochs. We will evaluate both 
LSTM architectures' performance on the test set for the 
suggested numbers of epochs: 600, 800, and 900.   

 

 
Fig. 5. Cost of validation by adjusting Model Learning Rate. 

3.3 Empirical Investigation of ARIMA and LSTM forecasting 

The optimal ARIMA(4, 1, 1) model, identified based on the 
training set, was trained and the residuals were analyzed. Fig. 9 
displays the residual plot, indicating initial significant 
fluctuations in the residuals that gradually center around zero in 
later steps. 
 

 
Fig. 6. ARIMA(4, 1, 1) model residual. 

The density plot of the residuals, as illustrated in Fig. 10, 
demonstrates a distribution that closely approximates normality. 
This observation suggests that the model accurately captures the 
underlying patterns of the data and that any errors present are 
randomly and uniformly distributed. 

 

 
Fig. 7. ARIMA(4, 1, 1) model residual density. 

By employing the Autoregressive Integrated Moving 
Average (ARIMA) model and Long Short-Term Memory 
(LSTM) models with different cell architectures. Fig. 11 
illustrates the results obtained from the ARIMA(4, 1, 1) 
forecasting and the LSTM models with LSTM forget gate cell 
and peephole connection cell.  

 

 
Fig. 8. ARIMA(4, 1, 1) and LSTM model Forecasting on Test Set. 
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As shown in Fig. 11, ARIMA(4, 1, 1) forecasting results in 
a fluctuating line compared to the smooth line obtained from the 
LSTM models. The LSTM models with peephole connection 
LSTM cell and forget cell can predict the overall trend of the 

gold price, whereas the ARIMA(4, 1, 1) model fails to capture 
this distinction. To conduct a fair evaluation, we calculated the 
error using the metrics described in Section 2.4.  

Table 3 presents the outcomes of a comparative analysis of
 
Table 3 Forecasting Result on Test Set 

 
various forecasting models with regard to their performance in 
predicting the test set. The results indicate that the ARIMA(4, 1, 
1) model has the highest error rates in terms of RMSE, MAPE 
and sMAPE, with values of 87.2298, 0.0388, and 0.0397, 
respectively. In contrast, the LSTM model with a forget gate 
LSTM cell at 600 epochs achieved the best performance among 
all models, with an RMSE of 66.5199, MAPE of 0.0282, and 
sMAPE of 0.0282. The model's performance did not improve 

significantly with increased epochs, resulting in higher RMSE 
values at 800 and 900 epochs. The LSTM model with peephole 
connections performed better than the ARIMA(4, 1, 1) model but 
was inferior to the LSTM model with forget gate cells. The 
LSTM model with peephole connections did not perform better 
than forget cells. The LSTM model with peephole connections 
achieved its best performance at 900 epochs with an RMSE of 
67.9864, MAPE of 0.0291, and sMAPE of 0.0293. 

In terms of elapsed time, the ARIMA(4, 1, 1) model took 
the least amount of time to train, with only around 0.0820s. The 
model with the lowest RMSE took approximately 21.7594s to 
train, which was higher than the ARIMA model but lower than 
all other LSTM models. The LSTM model with peephole 
connection cells took longer to train compared to the LSTM 
model with forget gate cells, despite having fewer LSTM layers.   

The investigation findings reveal that, in univariate time 
series analysis, the LSTM model outperforms the ARIMA model 
in the long-term forecasting of data due to its ability to capture 
long-term trends effectively. Incorporating a peephole 
connection to the LSTM cell does not enhance the model's 
performance in terms of accuracy or training speed. Through the 
process of hyperparameter tuning, it is evident that the LSTM 
model requires more effort and time to achieve optimal results. 

4. CONCLUSIONS   

The study employed the ARIMA(4, 1, 1) and LSTM models 
for forecasting gold prices. The ARIMA model demonstrated a 
good fit for the training set with residuals centered around zero 
and approximately normally distributed. The LSTM model with 
forget gate cell at 600 epochs provided the most accurate forecast 
for the test set with an RMSE of 66.5199, MAPE of 0.0282, and 
sMAPE of 0.0282. ARIMA was shown to be an easy method to 
implement and take less time in both parameter tuning and 
training. The LSTM model, on the other hands, take more efforts 

and time to train and tune but it provides more superior result. In 
univariate time series forecasting, the LSTM model with forget 
gate LSTM cell provides superior performance compared to the 
ARIMA model and the LSTM model with peephole connection 
cell.  

To further advance this research, we propose studying an 
alternative LSTM model with a distinct cell architecture and 
exploring more robust methods for tuning the model's 
hyperparameters.. 
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