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Abstract: Non-intrusive load monitoring systems (NILM) have attracted much attention due to their potential contribution to energy 
savings for individual households. The approach analyzes the load consumption of each device in terms of the total energy 
consumption of the house. The selection of essential load signatures for load identification expresses a crucial challenge with NILM 
techniques. Several studies that have been proposed in the literature claim that the Voltage and Current (V-I) trajectory has identified 
the most effective individual steady-state signature for appliance identification. In addition, multi-scale approaches utilized to derive 
the load signature have limitations. Therefore, this study is focused on one cycle of steady-state voltage and current used to generate 
a voltage-current trajectory. Next, the Fourier phase correction approach has been employed to eliminate the issue of current and 
voltage starting points. Afterward, the corrected starting point of the V-I trajectory of each electrical load appliance is then 
represented by the Triangle Area Representation (TAR) at various side lengths. Since the TAR signature contains an extremely high-
dimensional subspace, it is significant to perform Principal Component Analysis (PCA) to produce a low-dimensional space feature. 
Consequently, appliance identification has been improved based on the weighted K-nearest neighbor (W-KNN) multi-classification 
technique. In addition, the Plug Load Appliance Identification Dataset (PLAID) with three different versions is used to evaluate the 
performance of the proposed algorithm. As a result, our proposed algorithm with these datasets improves accuracy results compared 
to state-of-the-art approaches that relied on steady-state signatures for load identification. 

Keywords: Non-intrusive Load Monitoring; V-I trajectory; Multi-Scale Signature; Triangle Area Representation, Principal    
Component Analysis, Weigted K-nearest Neigbors 

 
1. INTRODUCTION1 

Growth in electrical consumption has increased 
significantly. Electrical power has become an essential part of 
modern social development. As demand rises, issues such as an 
energy crisis, climate change, and energy conservation will 
emerge, affecting the country's overall economy. Due to the 
numerous network connections of electrical appliances and 
technological equipment, power consumption has also 
significantly increased faster than global population growth. 
According to the United States Energy Information 
Administration (EIA), in 2000, global electricity net 
consumption was 13,277 billion kilowatt-hours (kWh), a number 
that increased to 22,347 billion kWh in 2017 [1].  

In recent years, energy management has become a sensitive 
topic that requires the monitoring and control of electrical 
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utilities to save energy or reduce energy consumption [2]. 
Advanced Metering Infrastructure (AMI) is a term for systems 
that measure, collect, and analyze energy use and communicate 
through metering devices. Load monitoring is an element of 
AMI that breaks down aggregated energy consumption data into 
the power consumption of individual devices and analyzes 
relevant power data that can be used to manage energy, save 
energy, diagnose device faults, and respond to power demand 
[3]. According to the research, when consumers receive an 
electrical bill that includes specific information on the energy use 
of individual appliances, they could save up to 12% [4,5]. 
Electricity consumption in Cambodia reached 11.5 terawatt-
hours in 2020 [5]. Based on a 12% savings if consumers receive 
specific information on their energy usage, this ratio could 
represent 1.38 terawatt hours per year in energy savings. 

Appliance load monitoring techniques are separated into  
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two categories, namely the Intrusive Load Monitoring method 
(ILM) and the Non-intrusive Load Monitoring method (NILM), 
which are used in identifying appliances based on power 
consumption. ILM installs sensors in each device to measure 
energy consumption. Although it can perform high-precision 
monitoring, it also results in high installation costs [6]. In 
response to the limitations of the direct sensing approach, Non-
Intrusive Load Monitoring (NILM), first introduced by Hart [7], 
relies only on single-point measurements of voltage and current. 
The NILM techniques analyze the input voltage and current of 
total electricity consumption and monitor appliance utilization 
using feature extraction and load identification algorithms. In 
addition, it can be widely used in various fields and has the 
advantages of low installation costs, minimal user intervention, 
and flexible use [8]. 

 A load device or appliance has a distinctive electrical 
expression considered a load signature. The NILM method 
extracts features for load identification from various load 
signatures. Hart [7] first proposed the usage of the version of 
power as load features. After that, power load signatures have 
been used in numerous studies on NILM, which separates 
individual loads from an aggregate signal [9, 10]. Nevertheless, 
for appliances with similar power usage, the identification 
accuracy will be significantly reduced. Load signatures can be 
recognized by extracting information from input current and 
voltage signals during transient and steady-state processes on the 
appliance.  

Transient approaches utilize the characteristics of the state 
transitions of a load device. For instance, wavelet transform [11], 
S-transform [12], transient power, and start-up current [13] are 
features obtained in a transient state. The use of transient 
signatures can improve the accuracy of load recognition. In 
addition, the extraction of transient load signatures requires 
a high sampling frequency and large data storage. Furthermore, 
these techniques would not differentiate between appliances with 
similar transient characteristics [14]. On the other hand, Steady- 
state methods truncate a steady-state signal from raw data such 
as odd-even harmonic ratio, active power, reactive power, and 
apparent power [15]. In addition, Mulinari et al. [16] have 
proposed eight different features from the V-I trajectory [17] in 
terms of steady state and transient region.  

Many techniques based on steady-state and transient 
features have been proposed in the literature. Voltage-Current 
(V-I) trajectories can be identified among various approaches, 
particularly in steady-state regimes. V-I trajectories are essential 
as load signatures for NILM algorithms, as they can integrate 
several features from the interaction between the current and 
voltage waveforms of appliances. Numerous scalar load 
signatures have been derived through this kind of signature [16, 
17, 18, 19]. 

Thus far, there seems to be little study of the multi-scale 
approach used in the NILM technique, which means these 
approaches utilized to derive the load signature have limitations. 
Numerous shape-based signatures can be discovered in the field 
of image processing, and it has been proposed that a multi-

resolution shape signature approach can increase shape 
classification performance [20]. Furthermore, the resulting 
Multi-scale TAR (MTAR) is more noise-resistant, less 
complicated, and more selective than related approaches such as 
curvature  scale-space (CSS) [21].  

Additionally, image-based V-I or multi-scale features are 
represented by 2D matrices in a high-dimensional space. It 
would require extensive computational resources for 
identification. A dimensionality reduction technique can be used 
in order to reduce this complexity. For instance, Principal 
Component Analysis (PCA) is a statistical approach used to 
reduce the dimensionality of data [22, 23]. Moreover, [24, 25, 
26] demonstrates the various implementations of PCA in the 
NILM methodology. Gao et al. [24] use PCA to reduce the 
dimension of various features, such as raw current, quantized 
features, and VI binary images. The principal component 
analysis (PCA) is used in the NILM classification system to 
reduce the dimension of NILM power features in order to 
improve real-time NILM classification [25], and it is used to 
extract valuable features from power consumption data in order 
to detect consumer type by presenting high-dimensional data in 
a low-dimensional space while retaining as much information 
from the initial data as possible [26]. 

In this context, the primary objective of this study is to 
enhance the accuracy of load identification within the NILM 
classification framework. The study aims to accurately identify 
and differentiate between different appliance types by employing 
an efficient load signature, advanced feature extraction, and 
classification techniques that effectively address the challenge of 
overlapping energy consumption patterns. This work introduces 
a novel multi-resolution technique called Triangle Area 
Representation (TAR) for NILM classification. This proposed 
signature is directly computed from the V-I trajectory in the 
steady-state region. The TAR signature is then applied to PCA 
in order to generate a low-dimensional space feature with only 
the most essential components. To evaluate the performance of 
the algorithm, a publicly available dataset (PLAID) is used, and 
load classification is done with a machine learning algorithm 
(W-KNN). 

The rest of this paper is organized as follows. Section II 
presents the previous features addressed in the literature, which 
are based on the V-I trajectory. Section III introduces the 
methodology, which includes pre-processing, feature extraction, 
and classification. Section IV illustrates the results of our load 
classification. Finally, the conclusions and future works are 
provided in Section V. 

1. RELATED WORK 

This section provides an overview of the existing research 
on how they extracted the feature through the V-I trajectory. The 
V-I trajectory is the mutual locus of the steady-state 
instantaneous voltage and current. Using the normalized values 
of I and V during one cycle, the plot gives different shapes 
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depending on the load connected. According to previous 
research, V-I trajectories have been used with various techniques 
to represent a feature of the load signature. These various 
techniques can be divided into the scarlar shape-based signature, 
the image-based signature, and a novel multi-sale approach 
called the culvature scale space signature. The following 
subsections will provide additional explanations of each of these 
techniques, providing a thorough understanding of their 
respective methodologies and approaches. 

2.1 Shape-based V-I trajectory 

Scalar shape-based signature techniques characterize load 
signatures by utilizing the distinct shapes formed by the V-I 
trajectory, providing valuable insights into the underlying load 
behavior. Lam et al. [17] are the first group to develop a 
taxonomy of a 2-dimensional form of load signatures based on 
the shape of the voltage and current trajectory obtained using one 
cycle of the voltage (horizontal axis) and current (vertical axis) 
at a steady state of a load. This literature proposes a few shape-
based features connected to the physical characteristics of a load, 
such as: 
§ Asymmetry: A V-I trajectory with asymmetry is presented by 

one load with different shape and peak current in the positive 
and negative cycles. 

§ Area: The difference between the phases of the current and 
the voltage determines this feature. 

§ Area of left and right segments: This feature shows the phase 
difference between the appliance's peak current and voltage. 

§ Culvature of mean line: Similar to harmonic distortion, this 
feature is used to describe the distortion of a mean-line 
appliance's non-linearity. 

§ Looping direction: The phase angle between the voltage and 
current is connected to the looping direction of a trajectory. 
The direction of the trajectory's points is clockwise if the 
phase angle is positive. If not, the phase angle is negative. 

§ Peak of middle segment: The maximum peak of a trajectory's 
middle segment is measured. Small power consumption 
loads typically have a significant peak in the middle segment. 

§ Slop of middle segment: The slope of the middle segment of 
the trajectory is near to zero due to the conduction 
characteristic of specific components in electrical equipment. 

§ Self-intersection: The number of self-intersections for a V-I 
trajectory is proportional to the number of higher-order 
harmonics in the current waveform. 
Afterward, Wang et al. [19] discuss a possible quantification 

and formalization of the previously mentioned features, as well 
as the addition of two new steady-state features: 
§ Current span: is referred to as the active power magnitude of 

the load appliance, denoted as itc. 
§ Variation of instantaneous admittance: This feature 

distinguishes between non-resistive and resistive loads. The 
admittance standard deviation is added to the features, 
denominated as D. 

Recently, the 2D shape descriptor technique and another 
technique are applied to extract the one cycle in the steady-state 
region [27], which is determined as:  
§ Convex Hull Area: The convex hull area of the non-linear 

appliance is always larger than that of the resistive load 
appliance. The objective is to determine the area between the 
convex hull and the trajectory. 

§ Trajectory’s Length or Steady-State Current Span: This 
feature is used to present the current magnitude in the steady-
state area,which is linked to the horizontal length of the 
trajectory prior to normalization. 

2.2 Image-based V-I representation 

In contrast to the scalar shape-based method, image-based 
signature techniques transform the V-I trajectory into visual 
representations [24, 28, 29, 30], allowing the use of image 
processing and computer vision methods to extract useful 
features from the load signatures. The original V-I trajectory is 
transformed into a grid of cells with the colors black and white 
[24, 25] to create the binary V-I trajectory. According to Gao et 
al. [24], the amplitude-normalized Voltage-Current (VI) 
trajectories are transformed into binary pictures by creating a 
mesh on the original VI trajectories and making each cell 1 if it 
contains points and 0 otherwise. Moreover, Du et al. [28] show 
the algorithm for mapping V-I trajectory to cell grids with binary 
values. 

Since it is not simple to extract characteristics from the VI 
trajectory, instead, by meshing the VI trajectory, the VI 
trajectory may be transformed into a pixelated VI picture (n x n 
matrix). To completely use the information contained in the VI 
trajectory, De Baets et al. [29] propose representing it as a 
weighted pixelated image with continuous values rather than 
binary values. 

2.3 Culvature scale space signature 

The curvature-scale space signature is a novel method that 
offers a multi-scale analysis of the V-I trajectory curvature to 
capture further details and variations in load behavior. To 
enhance the image-based V-I representation in NILM 
classification, de Paula Rodrigues and da Silveira [31] propose 
extracting two bidimensional steady-state load signatures from 
the curvature scale space of voltage-current trajectories. These 
signatures aim to improve the discriminative characteristics of 
image-based V-I representations. However, existing methods 
often overlook the phase delay between current and voltage 
waveforms, which contains valuable information for load 
identification. The proposed curvature scale space-based 
signatures are derived from the curvature function, which 
measures the displacement between the parametric components 
of a planar shape. The first signature, ECSS, combines the 
image-based V-I representation with the extrema points detected 
on each curvature function obtained during the process. The 
second signature, DCSS, is constructed by progressively 
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smoothing the components of a closed planar curve using a 
Gaussian kernel with varying standard deviation. This results in 
a continuously increasing sequence of scale values that generates 
representations of closed planar curves. Experimental evaluation 
demonstrates promising results, with the curvature scale space-
based signatures outperforming traditional methods in load 
classification accuracy, particularly in scenarios where phase 
delay significantly influences the classification outcomes. 

2. METHODOLOGY 

In this work, the methodology is organized into three main 
sections: preprocessing, feature extraction, and classification, in 
order to classify each type of appliance. The overall framework 
of the proposed algorithm is illustrated in Fig. 1. 

3.1 Data preprocessing 

In this stage, the raw current and voltage signals of each 
electrical load appliance are utilized in this approach. The V-I 
trajectory of each appliance is extracted by truncating the steady-
state voltage and current waveforms. In a steady-state region, 
only one cycle is extracted and denoted by the vectors 𝑉	(𝑡) and 
𝐼	(𝑡) for voltage and current, respectively. In order to reduce 
computational resources, these vectors are downsampled two 
times,  and denoted as 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑀, where 𝑆𝑖 	 = 	 (𝑉𝑖, 𝐼𝑖), 
and 𝑖	 = 	 (1, 2, 3, . . . , 𝑀).  

Next, after obtaining the reduced data, Fig. 2 is examined, 
revealing disparate starting points for each appliance, making it 
challenging to identify the load signature of the V-I trajectory. 
The marker on each trajectory represents the starting point of the 
sampled signal. It can be assumed that the different starting point 
of the sampled signal will result in low accuracy or 
misclassification. To eliminate this issue, the Fourier phase 
correction approach has been employed [32].  

 
Fig. 1. The diagram of the proposed algorithm in the methodology 
process. 

The phase correction technique has been used to determine 
the starting point dependency. The process of this method is that 
the current signal in the time domain is transformed into the 
frequency domain by using the Discrete Fourier Transform 
(DFT). The sequence of the current signal 

𝐼(1), 𝐼(2), …… . , 𝐼(𝑀) is converted to a new sequence according 
to the formula of DFT: 

                  𝐼"(𝑖) = 			𝑅𝑖 exp(𝑗𝜃𝑖) 								𝑖 = 1,2,3, … . . , 𝑀          (Eq. 1) 

In the frequency domain, its magnitude and phase are 
computed. Subsequently, the phase is corrected to be invariant 
to the starting point. The DFT coefficients		𝐼7(𝑖) =
𝑅8& exp9𝑗𝜃8&:	are normalized following the equation below: 

                               𝜃!𝑖 = 𝜃𝑖 − 𝑖
𝜃−1+𝜃1

2
            (Eq. 2) 

Using inverse DFT, new samples of the current signal with 
magnitude and corrected phase can be obtained. Next, the 
voltage signal 	𝑉8(𝑖) is adjusted without the use of DFT by simply 
rearranging the sampled points of the voltage signal to 
correspond with those of the new current signal.  

 
Fig. 2. The V-I trajectories of two load appliances of Compact 
fluorescent lamp. 

 
Fig. 3. The extracted steady-state current of two Compact fluorescent 
lamps for one cycle (a) before and (b) after applying Fourier phase 
correction approach. 

As depicted in Fig. 3(b), after using the phase correction 
technique, both current waveforms corresponding to two 
compact fluorescent lamps look very similar, whereas the signals 
are mismatched before correcting the phase, as shown in Fig. 
3(a). 
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Finally, the center of mass of the trajectory is shifted to the 
origin. It can be determined as follows:                   
 

 "𝑉
#𝑖 = 𝑉! 𝑖 − 𝑉𝑚
𝐼𝑖̅ = 𝐼̂𝑖 − 𝐼𝑚

   (Eq. 3) 

 
where 𝑉𝑚 =

1

𝑁
∑ 𝑉𝑖𝑁
𝑖=1  is the center of mass of Vi , and 𝐼𝑚 =

1

𝑁
∑ 𝐼𝑖𝑁
𝑖=1  is the center of mass of Ii 

3.2 Feature extraction 

Feature extraction plays an important role in the study of 
load signatures. After the voltage and current signals are 
normalized in the preprocessing step, the features of each 
appliance need to be extracted to identify their unique 
characteristics. A multi-scale technique called the triangle area 
representation is adopted to extract the appliance signature [33].  

The area of a triangle, which is generated by any three 
consecutive sampled points on the V-I trajectory. (𝑉<&,-, 𝐼̃𝑖−𝑙), (𝑉( 𝑖, 
𝐼̃𝑖) and (𝑉( 𝑖+𝑙 , 𝐼̃𝑖+𝑙), is computed to provide the triangle area 
representation (TAR) signature with various triangle side lengths 
(TSL). Fig. 4 provides a visual representation of the area of the 
triangle represented on the V-I trajectory with consecutive 
sampled points. For instance, the red curve is the V-I trajectory 
of Fan, and the blue line is the area of the triangle at the first 
sample point at the triangle side length equal to 70. This TAR 
signature is represented by a two-dimensional (2D) matrix, 
which is also plotted in 3D format as shown in Fig. 5, with the z-
axis presenting the normalized value of the TAR for each sample 
point and TSL. Following the expression in (Eq. 4), TAR can be 
computed. 

 
Fig. 4. The form of the area of the triangle represented on the V-I 
trajectory. 

 

Fig. 5. TAR at different TSL of Fan . x is the sampled point 
index, y is the level of TSL, and z is the normalized value of 
TAR signature. 

 𝑇𝐴𝑅(𝑖, 𝑙) = 	 0
1
@
𝑉A&,- 𝐼&̅,- 1
𝑉A& 𝐼&̅ 1
𝑉A&2- 𝐼&̅2- 1

@ (Eq. 4) 

where l = 1, 2, 3 …, ⌊ N−1/2 ⌋ is a number of TSL. 
 

3.3 Classification process 

As described in feature extraction, the shape of V-I 
trajectories can be extracted using the TAR method. Specifically, 
the shape features are represented in 2D matrices, where each 
row corresponds to TAR at each sampling point and each column 
corresponds to levels of triangle side length. To prepare data for 
classification, 2D matrice is transformed into a single-column 
feature vector by concatenating the order of their rows. 
Containing such feature vectors with a very high-dimensional 
subspace, this work demonstrates the utilization of 
dimensionality reduction and classification techniques. 
Specifically, Principal Component Analysis is employed for 
dimensionality reduction, while Weighted-K-nearest neighbors 
is utilized for appliance classification. 

A. Dimensionality reduction 

The common goal of PCA is to reduce high-dimensional 
data to lower dimensions while keeping most of the information 
by maximizing the variance of all projected samples. The TAR 
signature must be converted from a 2D matrix to a 1D vector in 
order to be used in PCA. This transformation is accomplished by 
concatenating the columns of the TAR signature. The process of 
PCA includes the first step, which is a training step, and another 
step, which is a testing step. The column vector of M samples 
represents the training set of the electrical load signature 
{𝑎1, 𝑎2, 𝑎3, … . . , 𝑎𝑀}		in n-dimensional space. Eq. 5 can be 
utilized to calculate the mean of the training set. 
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 𝜇𝑎 = 	
1

𝑀
∑ 𝑎𝑗𝑀
𝑗=1  (Eq. 5) 

The total scatter matrix or covariance matrix can be 
computed as : 

 𝐺 = 
1

𝑀
∑ (𝑎𝑗
𝑀
𝑗=1 − 𝜇𝑎)(𝑎𝑗 − 𝜇𝑎)

𝑇 (Eq. 6) 

After finding the total scatter matrix, the goal of PCA is to 
find the eigenvector and eigenvalue of the covariance matrix. 
However, calculating eigenvectors directly can be 
computationally expensive and time-consuming. Therefore, the 
Singular Value Decomposition (SVD) approach is used to 
reduce computational complexities. As an outcome of the SVD 
computation, the needed eigenvector 𝑈 = [𝑢0, 𝑢1, 𝑢6, … , 𝑢7]	 of 
G is produced, which corresponds to the eigenvalue 𝛼1 ≥ 𝛼2 ≥
𝛼3 ≥ 	… . . ≥ 𝛼𝑀. In computing, the optimal eigenvectors 𝑈𝑜𝑝𝑡 
are selected based on the cumulative sum of the P largest 
eigenvalues, where the index value P is determined as the lowest 
index value of the following percentage: 

 
∑ 𝛼𝑖
𝑃
𝑗=1

∑ 𝛼𝑗
𝑀
𝑗=1

≥ 95% (Eq. 7) 

The new 𝑗𝑡ℎ projected  feature data 𝑏𝑗 in the training set can 
be calculated from the sample 𝑎𝑗 once the optimal eigenvector 
𝑈𝑜𝑝𝑡 is determined. The projected feature data corresponding to 
the  P-component of the eigenvector can be computed as follows: 

                                   𝑏𝑗 = 𝑈𝑜𝑝𝑡𝑇 (𝑎𝑗 − 𝜇𝑎)                    (Eq. 8) 

It is less complicated throughout the testing procedure than 
during the training phase. Assume 𝑎′ is an unknown input. 
Following the expression in (Eq. 9), the projected feature 𝑏′	of 
the unknown input 𝑎′ can be computed.  

                           𝑏′ = 𝑈𝑜𝑝𝑡𝑇 (𝑎′ − 𝜇𝑎)  (Eq. 9) 

B. Appliance reconigtion 

The low-dimensional subspace's projected feature is used as 
the input for an electrical load appliance belonging to one of the 
classes labeled in the dataset. To classify each type of appliance, 
one of the supervised learning algorithms called "Weighted k-
Nearest Neighbors" is adopted to predict the unknown input type 
of electrical load appliance, where k is a number of neighbors 
and w is a weighted coefficient. This approach is rather simple 
by calculating the distance between unknown data	𝑏′ and sample 
one 𝑏𝑗	in the dataset and then selecting the k-nearest value of the 
sorted distance. The Euclidean distance is defined as: 

  𝐷9𝑏>, 𝑏?: = T𝑏> − 𝑏?T (Eq. 10) 

The distance between unknown and sample data is 
represented as a matrix for each class of data. Then select the 
first k minimum distances. Finally, the class of unknown input 
can be predicted by following the class that has the maximum 
distance weight value determined as:  

 

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑠∈𝐶𝑠

∑ 𝑤𝑗𝛿(𝑠, 𝑏𝑗)𝑘
𝑗=1 					 (Eq. 11) 

where 𝑤𝑗 =
1

𝐷2"𝑏′,𝑏𝑗#
  is the weighted coefficient, and 𝑠 is the 

class label. 

C. Performance measure 

The accuracy evaluation metrics are widely used for 
evaluating the classification procedure. To assess the 
performance of the proposed classification algorithm, various 
assessment measures such as accuracy, precision, recall, and F1- 
score are used. These metrics can be computed based on 
parameters of the confusion matrix, including True Positive 
(TP), True Negative (TN), False Positive (FP) and False 
Negative (FN), as described in Fig. 6.  

Classification accuracy is defined as the ratio of correct 
predictions to total predictions. Precision, also known as positive 
predictive value, represents the number of correct positives 
predicted by the model in relation to the total number of positives 
predicted. Recall is also known as sensitivity or true positive 
rate. It is the positive rate between the predicted number of data 
points from our model and the actual number of data points. 
Precision and weighted harmonic recall are combined in the F1-
socre [34]. 

 
Fig. 6. Multi-class confusion matrix. 

The performance assessment indication distinguishes the 
evaluation criteria to consider classification results with the 
elements of accuracy, f1-score, precision, and recall and can be 
formulated as:  
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 GH2GI
GH2GI2JH2JI

 (Eq. 12) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 GH
GH2JH

 (Eq. 13) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	 GH
GH2JI

 (Eq. 14) 

 𝐹 − 1	𝑆𝑐𝑜𝑟𝑒 = 2 cHKLM&N&OP×RLMS--
HKLM&N&OP2RLMS--

d (Eq. 15) 

3. RESULTS AND DISCUSSION 

This section presents the results of the simulations, followed 
by a comprehensive discussion and analysis of the findings to 
clear up the effectiveness and performance of the proposed 
algorithm in accurately identifying appliances. To evaluate the 
performance of the classification algorithm with the proposed 
multi-scale signatures, the PLAID datasets with three different 
versions are used. These datasets include both sub-metered and 
aggregated data. Only the sub-metered data is employed, which 
contains the voltage and current pairs sampled at 30 kHz of 1074 
[35] and 1793 [36] individual appliances recorded from 11 
different electrical home appliances and 1876 [37] from 16 
different electrical home appliances in 2014, 2017, and 2020, 
respectively. Table 1 presents the number of samples of PlAID 
in three different versions. 

Through 5-fold cross-validation, these sub-metered datasets 
are divided into training and testing sets in order to reach the best 
performance of the evaluated signature. The feature data is 
divided into five groups, which include training and testing sets. 
In each appliance class, 80% of the samples are utilized for 
training and the remaining 20% for testing. 

Table 2 shows the performance of the classification 
algorithm for each dataset. The performance measures 
mentioned (accuracy, recall, F1 score, and precision) can be 
calculated through the expressions in (Eq. 12, Eq. 13, Eq. 14, and 
Eq. 15), which are frequently employed in machine learning and 
classification tasks. After the data is split into a training and 
testing set, the model is trained on the training data using the 
classification technique, then evaluated, and the prediction is 
made through the testing set. After obtaining the model's 
predictions for the testing set, we compare them with the true 
class label. It is important to emphasize that these performance 
measures were derived from experimental procedures and the 
evaluation of the model on an independent test dataset. 
Therefore, the results presented in Table 2 represent the 
comprehensive performance of five simulations conducted using 
a 5-fold cross-validation approach. 

The result shows the W-KNN classifier on the PLAID of 
three different versions at the lowest k-nearest number (k = 1). 
According to the PLAID results, the 2017 version achieves the 
highest accuracy. This dataset obtained an accuracy of 97.43% 

(F1-Score of 96.98%), implying that it correctly classified 
97.43% of all appliance samples. This indicates that the 
prediction has a relatively low rate of both false positives and 
false negatives. With a precision of 97.07% and a recall of 
96.94%, the model demonstrates its successful ability to 
accurately identify the class of each appliance. In another 
version, specifically the 2014 version, an accuracy of 96.55% 
was achieved, along with an F1-score of 94.21%, recall of 
94.32%, and precision of 94.25%. Additionally, in the year 2020, 
an accuracy of 97.13% was attained, accompanied by an F1-
score of 90.88%, recall of 91.63%, and precision of 90.32%. 

Table 3 presents the evaluation results for the PLAID 
dataset at different values of k. The results demonstrate the 
simulation's performance in terms of accuracy, precision, recall, 
and F1-score across the three versions. At k = 1, the result 
achieved remarkable accuracy scores: 96.55% for PLAID 2014, 
97.43% for PLAID 2017, and an impressive 97.13% for PLAID 
2020, indicating a high percentage of correct predictions. 
However, when k increased to 5, the accuracy scores decreased 
to 95.07% for PLAID 2014, 96.65% for PLAID 2017, and 
95.48% for PLAID 2020. Furthermore, at k = 9, the accuracy 
scores further declined to 92.18% for PLAID 2014, 96.54% for 
PLAID 2017, and 92.44% for PLAID 2020.  

Additionally, the highest precision, recall, and F1-score 
values were consistently observed at k = 1 across all three 
versions, showcasing the system's strong capability to accurately 
classify positive instances, effectively capture positive instances, 
and maintain a balanced precision-recall relationship, 
respectively.  

Table 1 The sample number of PLAID with three different versions 

PLAID 2014 2017 2020 
Air conditioner 66 208 204 
Blender   2 
Coffee Maker   10 
Compact fluorescent 
lamp 

175 220 230 

Fan 115 210 220 
Fridge 38 90 108 
Hair iron   10 
Hair dryer 156 248 246 
Heater 35 85 85 
Incandescent light bulb 114 148 157 
Laptop 172 207 216 
Microwave 139 229 200 
Soldering Iron   20 
Vaccum 38 73 83 
Washing Machine 26 75 75 
Water Ketttle   10 
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Table 2 Performance measure with three versions of PLAID 

PLAID Accuracy Precision Recall F1-Score 

2014 96.55% 94.25% 94.32% 94.21% 

2017 97.43% 97.07% 96.94% 96.98% 

2020 97.13% 90.32% 91.63% 90.88% 
 

Therefore, when we carefully compare the evaluation results 
for different values of k, we notice that there are slight decreases 
in accuracy, precision, recall, and F1-score for all versions of the 

PLAID dataset at k = 5 and k = 9. This suggests that increasing 
the value of k might lead to a slight degradation in performance. 
Figs. 7, 8, and 10 present the confusion matrices and showing the 
accuracy of each appliance corresponds to the various PLAID 
datasets. 

It is observed that in Fig. 7, the predicted class is displayed 
in columns, while the true class is represented in rows. The 
diagonal elements represent the number of correctly predicted 
instances for each class. For instance, the model correctly 
predicted 58 Air conditioners, 173 compact fluorescents, and 
115 Fans. Then, the sum of the values in a column excluding the 
diagonal element represents the instances that were incorrectly 

classified as belonging to that class. For example, the model 
incorrectly predicted 4 instances as Air conditioners when they 
actually belonged to other classes. Next, the sum of the values in 
a row excluding the diagonal element represents the instances of 

that class that were incorrectly classified as belonging to other 
classes. The model incorrectly predicted 2 instances of compact 
fluorescents as laptops.

Table 3  Performance evaluation of the PLAID dataset at different values of k 

 

 
 
 
 

 
 
 

It can be observed that some appliances get 100% classification 
accuracy for each dataset, such as PLAID 2014 (3 appliances), 
PLAID 2017 (3 appliances), and PLAID 2020 (7 appliances). 
Vaccum gives an accuracy of 100% for versions 2017 and 2020. 
In both versions of 2014 and 2017, Fridge obtained classification 
accuracy of 73.7.% and 88.9%, respectively, which shows the 
lowest accuracy among all appliances in each dataset. In 
addition, this kind of load is always misclassified as Air 
conditioning and fans. It causes similar load signatures, making 
it challenging for the model to distinguish between them, but 
when the sample load data is increased, it also increases the 
accuracy. like Air conditioners and fans that have better 
performance than refrigerators. 

 

 

 

 

 

 

Fig. 7. Confusion matrix of weighted kNN for k =1 (PLAID 2014).        

The observed similarity in the signatures of these four 
appliances, as depicted in the Fig. 9, implies that their V-I 
trajectories are closely aligned. Among these appliances, the fan 
stands out as an example. When the y-axis is expanded, it is 
highly probable that the fan's signature will resemble that of the 
other three figures, which exhibits a small size within the 
expanded range.  Blender is 100% misclassified with Compact 
fluorescent lamp and Vaccum in PLAID 2020, as shown in Fig. 
10.  

 

 

 
 
 
 
 
 
 

 
Fig. 8. Confusion matrix of weighted kNN for k =1 (PLAID 2017). 

 
Due to the limited amount of training data available for a 

Blender, the model may not have learned enough patterns and 
features to accurately classify it. As previously discussed, 5-fold 
crossvalidation has been used to divide the training and testing 



                                                                                       Chou et al./Techno-Science Research Journal 11(2) (2023) 57-67 

65 
 

sets. Additionally, since there are only two samples in the 
Blender overall sample, each fold should be randomly selected, 
with one sample serving as a training set and another as a testing 
set.  

 
 

 
 

 

 

 

 

 

 

 

Fig. 9. V-I Trajectory load signatures of four different appliances: 
Fridge, Air Conditioner, Fan, and Light Bulb. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Confusion matrix of weighted kNN for k = 1 (PLAID 2020). 

Table 4. Comparison results on PLAID 2014 and 2017 

 
 

DCSS (RFC) MTAR (W-KNN) 

2014 2017 2014 2017 
Accuracy 90.32% 85.67% 96.55% 97.43% 
F1-score 86.14% 84.23% 94.21% 96.98% 

Table 5. Accuracy comparison between the proposed classification 
algorithm and previous literature 

Feature Classifier Accuracy 
MTAR W-KNN 97.43% 
DCSS RFC 85.67% 

V-I, DCSS RFC 84.72% 
V-I, ECSS 2D-CNN 82.99% 
Time series RFC 80.70% 

 
 
 
 
 
 
 
 
 

 
This study utilizes the V-I trajectory of one-cycle signals in 

steady-state regions, down-sampling them, and applying Fourier 
phase correction. The Triangle Area Representation (TAR) is 
used to represent the corrected starting point of each appliance's 
V-I trajectory, followed by dimensionality reduction using 
Principal Component Analysis (PCA). The low-dimensional 
feature is then classified using the Weighted K-Nearest 
Neighbors (W-KNN) algorithm. Evaluation with different 
versions of the PLAID dataset demonstrates the algorithm's 
accuracy, with the 2017 version performing the best. The multi-
scale TAR signature with W-KNN achieves an accuracy of 
97.43%, surpassing previous approaches. We have high 
accuracy, indicating that the model performs well overall. The 
precision and recall values are also high, indicating the model's 
successful ability to accurately identify the class of each 
appliance. The 2014 version achieved slightly lower accuracy 
but still performed well, while the 2020 version showed 
comparable accuracy but lower F1-Score, recall, and precision. 
The evaluation results highlight the effectiveness of using k  = 1 
in achieving the highest precision, recall, and F1-score values 
across all three versions of the PLAID dataset. These findings 
suggest that increasing the value of k may lead to a slight 
degradation in performance. Therefore, the optimal choice of k 
appears to be k = 1 for the most accurate and balanced 
classification results.  

In our future work, the proposed approach will be 
implemented using our custom database. Furthermore, the scope 
of the research will be expanded by integrating additional steps, 
including the incorporation of event detection algorithms and the 
development of an energy disaggregation framework. The aim is 
to enhance the functionality and practicality of the NILM 
approach, with a specific focus on its application in real-time 
scenarios. 
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5.  CONCLUSION 

The paper presents a multi-scale signature as a 
representation for appliance load classification in Non-Intrusive 
Load Monitoring (NILM) systems. Specifically, a multi-scale V-
I trajectory approach has been proposed to extract appliance load 
signatures. The proposed classification algorithm, which 
incorporates principal component analysis and weighted K-
Nearest Neighbors, has been successfully validated for accurately 
recognizing load appliances. This approach effectively reduces 
high-dimensional data to a low-dimensional subspace, thereby 
improving the accuracy of load identification within the NILM 
classification framework. Consequently, it enables accurate 
identification and differentiation of various appliance types.  
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