
Techno-Science Research Journal 9(2) (2021) 60-66

Content list available at ITC

Techno-Science Research Journal
Journal Homepage: http://techno-srj.itc.edu.kh/

60

Helipad Detection for UAV based on YOLOv4 Transfer Learning Model

Vanyi Chao*, Sarot Srang, Morokot Sakal, Chivorn Keo

Dynamics and Control Laboratory, Department of Industrial and Mechanical Engineering, Institute of Technology of Cambodia,

Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia.

Received: 01 June 2021; Accepted: 21 October 2021; Available online: December 2021

Abstract: Humans have fast and accurate visual system that allows them to perform complex tasks like driving with a little

consciousness. Without visual system, UAV cannot do complex tasks like humans. When UAVs are equipped with visual system and

trained with fast and accurate model, they will be able to carry out even more complex tasks such as autonomous landing. Computer

vision is a technique suitable for UAV visual system. In this paper, we consider a computer vision technique that uses a deep learning

model to recognize the landing site (Helipad). We conducted an experiment of training the deep learning model to recognize Helipad.

In order to land on the desired site safely, we proposed a detection method based on YOLOv4-tiny transfer learning model to detect

the Helipad in real time. The digital images were used as training data in order for the model to learn and gain a high-level

recognizing object that exists in an image. The data collection to train the model was delimited by collecting them from the internet

and video’s snapshot. The annotation tool was used in order to draw ground truth box for 184 training samples and 57 testing samples

with 1 class. The YOLOv4-tiny model was trained on darknet framework, using YOLOv4-tiny pre-trained weight and the described

input data. After training was completed with GPU acceleration, the best weights were saved in order to use in OpenCV’s Deep

Neural Network (DNN). The model was first validated with testing images, tested on videos and finally real-time streaming video in

order to investigate its performance. We used Intersection over Union (IOU), precision, recall, miss rate and mean Average Precision

(mAP) as the evaluation metrics as well as Loss-function visualization to visualize and analyze the model’s performance. During

real-time streaming video, we investigate frames per second (FPS) and inference time. Finally, the experimental results show that

the detection method can accurately detect the Helipad in real-time video.

Keywords: Computer vision; Real-time object detection; Daarknrt; OpenCV; You Look Once (YOLO)

1. INTRODUCTION1

When humans take a glance at an image, they will instantly

know what and where the objects are in that image and how they

interact. The human visual system is fast and accurate that allows

them to perform complex tasks like driving with a little

consciousness. This is a motivation why researchers try to find a

way to equip robots or machines with visual system.

General purpose object detection should be fast, and

accurate. Since the introduction of neural networks, detection

frameworks have become increasingly fast and accurate.

However, most detection methods are still constrained to a small

set of objects [1].

The early approach of the object detection model is called,

sliding window approach. Most successful object recognition

systems rely on binary classification, deciding only if an object

* Corresponding author: Vanyi Chao

E-mail: chaovanyi45@gmail.com; Tel: +855-69 802 410

is present or not, but not providing information on the actual

object location. To perform localization, one can take a sliding

window approach, but this strongly increases the computational

cost because the classifier function has to be evaluated over a

large set of candidate sub-windows [2].

The later approach to deal with computational cost was to

extract some region proposals (boxes) and check if any of those

boxes contain any object. The approach is called Region based

Convolutional Neural Network (R-CNN), which did selective

search so it used some deterministic algorithm that extracted

about 2 thousand potential bounding boxes for an image before

running through CNN. However, the model is still slow but has

less error in localization. Later on, several improved versions

have been published, refer to Fast R-CNN and Faster R-CNN

[3].

mailto:hul@itc.edu.kh

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

61

To deal with the term of speed, another approach called

YOLO was introduced by [4]. YOLO performed frame object

detection as a regression problem to spatially separated bounding

boxes and associated class probabilities. YOLO was the first

object detection network to combine the problem of drawing

bounding boxes and identifying class labels in one end-to-end

differentiable network. Although YOLO is the fastest, it

struggles to localize objects correctly compared to Fast R-CNN.

There are three improved versions of YOLO with the same

author [4,5], and the last version of YOLOv4 [6].

As the computing power of modern Central Processing Unit

(CPU) and Graphics Processing Unit (GPU) rapidly increases in

the last few years, that made it possible to train a new neural

network faster using Nvidia GPU and run multiple neural

networks in parallel on a smaller computer like Jetson nano for

object detection.

Landing an UAV is a very challenging problem. Pilots have

to spend a huge amount of time practicing landing technique in

order to minimize any risk that is involved during the landing

phase.

2. METHODOLOGY

2.1 Existing methods

Refer to [7], the author proposed an approach to detect

helipad in order to achieve high accuracy of pose measurements

of a real-time application. The algorithm consists of 3 main

steps, concerning the helipad detection and pose estimation, such

as image acquisition and preprocessing, helipad mark extraction

and corner detection of the helipad.

Rungta et al. [8] proposed a method to autonomously detect

Helipads in real time. The author used the method called

modified Image-Based Visual Servoing (IBVS). Once the

tracking starts the modified IBVS method starts publishing

velocity to guide the quadrotor onto the helipad.

However, those proposed approaches do not involve

machine learning or deep learning model. Deep learning has

many potential applications [9,10] and it has the ability to detect

many types of Helipads and many classes. The reasons deep

learning is suitable for this particular task are: it can detect many

types of Helipads (Every image that has a sign of a circle around

letter H), and use the same model to detect more classes (our

future work) such as obstacles.

2.2 Proposed method

This paper considers using YOLOv4-tiny transfer learning

model to detect Helipad in real time. It is also the best trade-off

model for our application and simple to work with, compared to

other models [6].

This paper is organized as follows: In section 2, the

architecture of YOLOv4 is illustrated and we explain how the

Helipad images were prepared before training. The Loss function

is derived to visualize how good the model is. In section 3, the

evaluation metrics are presented to validate the results. Section

4 illustrates how the transfer learning is done and the result is

discussed. Finally, the conclusion is drawn in section 5.

2.3 YOLOv4 architecture

Fig. 1 illustrates the combined architecture from different

methods which is divided into Backbone, Neck and Head.

YOLOv4’s architecture is composed of Cross Stage Partial

Network (CSPDarknet53) [11] as a backbone, spatial pyramid

pooling [12] as additional module, Path Aggregation Network

(PANet) [13] as the network neck and finally YOLOv3 [5] as the

network head. CSPDarknet53 is a novel backbone that can

enhance the learning capability of CNN. The spatial pyramid

pooling block is added over CSPDarknet53 to increase the

receptive field and separate out the most significant context

features. The PANet is used as the method for parameter

aggregation for different detector levels.

2.4 YOLOv4 data augmentation

The important part that YOLOv4 has improved is in data

preparation. Data augmentation is really important in computer

vision technique. The image augmentation in YOLOv4 includes

crop, rotation, flip, hue, saturation, exposure, aspect, mix up, cut

mix, mosaic and blur. These actions are done programmatically

in the YOLOv4 model.

Fig. 1. YOLOv4 combined architecture

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

62

2.5 Image data pre-processing

Helipad images are collected from the internet and video’s

snapshots. To enhance the diversity and richness of the

experimental data, the images are collected by using

augmentation technique in terms of scaling, flopping, changing

brightness, blurring and others. We collected 241 images which

were randomly split into 76% for training samples. Thus, we got

184 images for training and 57 images for validation. We

collected random size of images which were later resized to

416 × 416 image size to match the network dimensions. The

training and validation images are labelled by using an

annotation tool, called LabelImg [14], before training (Fig. 2).

Fig. 2. Image pre-processing

2.6 Loss function

Loss function defines how the prediction is good or bad. It

plays a very important role in any statistical model. Loss function

defines an objective which the performance of the model is

evaluated against and the parameters learned by the model are

determined by minimizing a loss function.

Deep learning discovers a very complicated structure in

large datasets by using optimization algorithms to optimize

objective function and then the internal parameters, which are

used to represent in each layer, are updated in order to minimize

the loss function. Therefore, object detection problems can be

cast as the optimization of the loss function requiring

minimization with respect to all parameters. In another word,

when the parameters are updated, we hope that the loss function

will converge to zero for the best model.

The YOLOv4 loss function consists of three parts such as

regression loss, classification loss and confidence loss.

Classification loss and confidence loss remain the same as the

YOLOv3 model. However, Complete Intersection over Union

(CIoU) [15] is used to replace the Mean Squared Error (MSE) to

optimize the regression loss (Fig. 3).

The CIoU loss can be defined as

𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +

𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (Eq. 1)

where:

𝜌2(𝑏, 𝑏𝑔𝑡) = the Euclidean distance between the center

points of the prediction box and the ground truth box.

𝑐 = the diagonal distance of the smallest closed area

that can simultaneously contain the prediction box and

the ground truth box, shown in Fig 3.

𝛼 = trade-off parameter and 𝑣 measures the

consistency of aspect ratio.

Fig. 3. Complete Intersection over Union (CIoU)

And 𝛼 and 𝑣 can be defined as

 𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
 (Eq. 2)

𝑣 =

4

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
)

2

 (Eq. 3)

The confidence loss can be defined as

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗[�̂�𝑖 log(𝐶𝑖)

𝐵

𝑗=0

𝑆2

𝑖=0

+ (1 − �̂�𝑖) log(1 − 𝐶𝑖)]

− 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗[�̂�𝑖 log(𝐶𝑖)

𝐵

𝑗=0

𝑆2

𝑖=0

+ (1 − �̂�𝑖) log(1 − 𝐶𝑖)]

(Eq. 4)

The classification loss can be defined as

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = − ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ [�̂�𝑖(𝑐) log(𝑝𝑖(𝑐))

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

+ (1 − �̂�𝑖(𝑐) log(1 − 𝑝𝑖(𝑐))]

(Eq. 5)

Finally, the total loss function is:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑠 (Eq. 6)

𝑆2 represents 𝑆 × 𝑆 grids of an image, each grid generates

𝐵 candidate boxes, each candidate box gets corresponding

bounding boxes through the network. If there is no object (noobj)

in the box, only the confidence loss of the box is calculated. The

confidence loss function uses cross entropy error and is divided

into two parts: there is the object (obj) and no object (noobj). The

loss of noobj increases the weight coefficient 𝜆, which is to

reduce the contribution weight of the noobj calculation part. The

classification loss function also uses cross entropy error. When

the j-th anchor box of the i-th grid is responsible for certain

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

63

ground truth, then the bounding box generated by this anchor box

will calculate the classification loss function.

3. EVALUATION METRICS

3.1 Intersection over Union (IoU)

The ground truth box is drawn by hand when labelled the

image. Thus, it is sure that the object exists in the box.

Assuming that it is a blue box in Fig. 4.

 The predicted bounding box is generated from the model

detector that indicates the location of the object predicted.

Assuming that it is a red box in Fig. 4.

 The IoU metric consists in calculating how much the

predicted bounding box overlaps with the ground-truth one.

𝐼𝑜𝑈 =

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (Eq. 7)

Fig. 4 illustrates the overlap between ground truth box and

predicted bounding box from poor to perfect. When 𝐼𝑜𝑈 is closer

to one, it is perfect. In contrast, it is poor when 𝐼𝑜𝑈 is getting

closer to zero.

Fig. 4. Intersection over Union

3.2 Precision, Recall and mean Average Precision (mAP)

• TP (True Positive) is when the model detects object when

the object is present and the 𝐼𝑜𝑈 > 0.5.

• TN (True Negative) is when the model does not detect object

when the object is absent.

• FP (False Positive) is when the model detects object when

the object is absent or the 𝐼𝑜𝑈 ≤ 0.5.

• FN (False Negative) is when the model does not detect

object when the object is present. All shown in Fig. 5.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(Eq. 8)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(Eq. 9)

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 (Eq. 10)

Fig. 5. Predicted bounding generated on Heliport

The average precision (AP) will be the area of a plotted

graph of precision versus recall for one class. And the mean

average precision (mAP) is the mean value of average precision

of all classes. In this paper, we predict only one class, thus, the

average precision and mAP is exactly the same.

4. RESULTS AND DISCUSSION

4.1 Environment and requirements

The implementation environment to train the model was a

personal laptop, MSI GS63 7RD that runs on Windows 10

operating system with Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz and 16GB of RAM. The model was trained by using a

NVIDIA GPU (GTX 1050, 2GB of VRAM). With this

environment, the model runs at 22 average frames per second.

The model was trained on a darknet framework which was

adapted from [16]. The system is coded in Python language.

Table 1 is the requirement dependencies which have to be

installed in order to train the model on GPU and GPU

acceleration to save time when training and decrease the time

inference when running the model.

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

64

Table 1 List of dependencies

Dependencies Used version Recommended

version

Cmake 3.20 ≥ 3.18

CUDA 11.2 ≥ 10.2

cuDNN 8.1.1 ≥ 8.0.2

OpenCV 4.5.1 ≥ 2.4

GPU CC 6.1 ≥ 3.0

For OpenCV, we built from source with CUDA and cuDNN

enabled. Table 2. shows the requirement VRAM during training

with batch size of 64 and 416x416 input image size. Since the

computer mentioned in 4.1 has only the VRAM of 2GB about

1907 MiB, the YOLOv4-tiny has been chosen as the training

model configuration and it is possible to use 8 subdivisions.

Table 2 VRAM requirement during training (MiB)

Subdivisions 64 32 16 8 4

YOLOv4 4236 6246 ? ? ?

YOLOv4-tiny 814 956 1321 1752 2770

YOLOv4-tiny-3l 830 1085 1282 1862 2982

4.2 Training

Since YOLOv4-tiny was originally created to be trained on

a COCO dataset containing 80 classes, some small changes had

to be made to the structure of YOLO. This was achieved by

changing the number of filters and classes that existed in each

YOLO layer. It is also necessary to change the number of

maximum batches and steps.

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (4 + 1 + 𝐶) ∗ 3

(Eq. 11)

𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 ∗ 𝐶

(Eq. 12)

𝑆𝑡𝑒𝑝𝑠 = 0.8 ∗ 𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠, 0.9

∗ 𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠
(Eq. 13)

where C is the number of classes.

Table 3 Hyper parameters used during training

Hyper parameters Value

Max batches 4000 (minimum 4000)

Batch 64

subdivisions 8

Weight decay 0.005

momentum 0.9

Learning rate 0.00261

Steps 3200,3600

Since we have only one class for landing site, we got the

number of 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 18. The maximum batches should not be

less than 4000 even 𝐶 = 1, thus, we choose 𝑚𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =
4000.

Every layer of YOLOv4-tiny uses leaky ReLU as the

activation function except for the last 2 convolutional layers of

[yolo].Eq. 11, Eq. 12, Eq. 13, and Table 3 are modified and saved

in yolov4-tiny-train.cfg and yolov4-tiny-test.cfg, shown in Fig.

6.

Fig. 6. Flow process of YOLOv4-tiny transfer learning

While training, we use the pre-trained weight yolov4-

tiny.conv.29. The weight file is saved once every 1000 iterations.

After the training is complete, the final weight and the best

weight are saved. After that, the best weight is used to replace

yolov4-tiny-conv.29 for testing images and video.

4.3 Results

Fig. 7 illustrates the average loss function and mAP for 4000

iterations. The result shows that the average loss converges to

zero. At the 4000th iteration the average loss is 0.0138 which

shows that the model is really good. Moreover, the mAP at the

end of training is 100% which is the best for one class detection.

We use 57 testing examples to validate the model. The result

shows in Table 4 and 5. We validated with 𝐼𝑜𝑈 = 0.5 and 𝐼𝑜𝑈 =
0.75. Thus, mAP is calculated with different 𝐼𝑜𝑈. We got 100%

mAP at 𝐼𝑜𝑈 = 0.5 and 94.48% mAP at 𝐼𝑜𝑈 = 0.75.

Table 4 Validation with 𝐼𝑜𝑈 = 0.5, (𝑚𝐴𝑃@0.5) = 1

TP FP FN Precision Recall Miss rate AP

57 3 0 0.95 1 0 1

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

65

Table 5 Validation with 𝐼𝑜𝑈 = 0.75, (𝑚𝐴𝑃@0.75) = 0.944

TP FP FN Precision Recall
Miss

rate
AP

54 6 3 0.9 0.95 0.05 0.9448

Fig. 7. Visualization of Loss (blue) and mAP (red)

Fig. 8. Helipad detection of 4 frames extracted from a testing videod

(A, B C and D).

Fig. 8 shows Helipad detection of some frames in a testing

video. The model can correctly detect the Helipad from far away

(small object) with 98% confidence and 100% confidence for

others.

5. CONCLUSIONS

In this paper, the Landing site (Helipad or Heliport)

detection based on YOLOv4-tiny transfer learning model is

proposed. The model looks at the image only once to perform

detection. The testing images prove that the model is good at

detecting the landing site with 0% of miss rate, 100% mAP at

IoU=0.5 and 5% miss rate, 94.48% mAP at IoU=0.75. Moreover,

the testing video shows that the model accurately detects the

landing site with the speed of 22 average FPS. For future work,

we should consider implementing Helipad detection on an actual

UAV and using the model to detect more classes.

REFERENCES

[1] Redmon, J., & Farhadi, A. (2017). Yolo9000: Better, faster,

stronger. Proceedings of the IEEE conference on computer

vision and pattern recognition, 7263–7271.

[2] Lampert, C. H., Blaschko, M. B., & Hofmann, T. (2008).

Beyond sliding windows: Object localization by efficient

A

B

D

C

 Chao et al./Techno-Science Research Journal 9(2) (2021) 60-66

66

subwindow search. 2008 IEEE conference on

computer vision and pattern recognition, 1–8.

[3] Girshick, R. (2015). Fast rcnn. Proceedings of the IEEE

international conference on computer vision, 1440–1448.

[4] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.

(2016). You only look once: Unified, realtime object

detection. Proceedings of the IEEE conference on

 computer vision and pattern recognition, 779–788.

[5] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767. Ren, S.,

[6] Bochkovskiy, A., Wang, C.Y., & Liao, H.¬Y. M. (2020).

Yolov4: Optimal speed and accuracy of object detection.

arXiv preprint arXiv:2004.10934.

[7] Patruno, C., Nitti, M., Stella, E., & D’Orazio, T. (2017).

Helipad detection for accurate uav pose estimation by

means of a visual sensor. International Journal of

Advanced Robotic Systems, 14(5), 1729881417731083.

[8] Rungta, A., Soni, Y., Agarwal, P., Ghosh, B., & Kumar, S.

(2020). Realtime and autonomous detection of helipad for

landing quadrotors by visual servoing. arXiv preprint

arXiv:2008.02236.

[9] Zhong, M., & Meng, F. (2019). A yolov3 based nonhelmet

use detection for seafarer safety aboard merchant ships.

Journal of Physics: Conference Series, 1325(1), 012096.

[10] Borngrund, C. (2019). Machine vision for automation of

earthmoving machines: Transfer learning experiments with

yolov3.

[11] Wang, C.Y., Liao, H.Y. M., Wu, Y.H., Chen, P.Y., Hsieh,

J.W., & Yeh, I.H. (2020). Cspnet: A new backbone that can

enhance learning capability of cnn. Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition workshops, 390–391.

[12] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial

pyramid pooling in deep convolutional networks for

 visual recognition. IEEE transactions on pattern

analysis and machine intelligence, 37(9), 1904–1916.

[13] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path

aggregation network for instance segmentation.

Proceedings of the IEEE conference on computer vision

and pattern recognition, 8759–8768.

[14] Tzutalin. (2018). Retrieved from

https://github.com/tzutalin /labelImg

[15] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D.

(2020). Distanceiou loss: Faster andbetter learning for

bounding box regression.Proceedings of the AAAI

Conference onArtificial Intelligence,34(07), 12993–13000.

[16] AlexeyAB. (2020). Darknet. Retrieved from

https://github.com/AlexeyAB/darknet

https://github.com/tzutalin%20/labelImg

