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Abstract: Humans have fast and accurate visual system that allows them to perform complex tasks like driving with a little 

consciousness. Without visual system, UAV cannot do complex tasks like humans. When UAVs are equipped with visual system and 

trained with fast and accurate model, they will be able to carry out even more complex tasks such as autonomous landing. Computer 

vision is a technique suitable for UAV visual system. In this paper, we consider a computer vision technique that uses a deep learning 

model to recognize the landing site (Helipad). We conducted an experiment of training the deep learning model to recognize Helipad. 

In order to land on the desired site safely, we proposed a detection method based on YOLOv4-tiny transfer learning model to detect 

the Helipad in real time. The digital images were used as training data in order for the model to learn and gain a high-level 

recognizing object that exists in an image. The data collection to train the model was delimited by collecting them from the internet 

and video’s snapshot. The annotation tool was used in order to draw ground truth box for 184 training samples and 57 testing samples 

with 1 class. The YOLOv4-tiny model was trained on darknet framework, using YOLOv4-tiny pre-trained weight and the described 

input data. After training was completed with GPU acceleration, the best weights were saved in order to use in OpenCV’s Deep 

Neural Network (DNN). The model was first validated with testing images, tested on videos and finally real-time streaming video in 

order to investigate its performance. We used Intersection over Union (IOU), precision, recall, miss rate and mean Average Precision 

(mAP) as the evaluation metrics as well as Loss-function visualization to visualize and analyze the model’s performance. During 

real-time streaming video, we investigate frames per second (FPS) and inference time. Finally, the experimental results show that 

the detection method can accurately detect the Helipad in real-time video. 
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1. INTRODUCTION1 

When humans take a glance at an image, they will instantly 

know what and where the objects are in that image and how they 

interact. The human visual system is fast and accurate that allows 

them to perform complex tasks like driving with a little 

consciousness. This is a motivation why researchers try to find a 

way to equip robots or machines with visual system. 

General purpose object detection should be fast, and 

accurate. Since the introduction of neural networks, detection 

frameworks have become increasingly fast and accurate. 

However, most detection methods are still constrained to a small 

set of objects [1].  

The early approach of the object detection model is called, 

sliding window approach. Most successful object recognition 

systems rely on binary classification, deciding only if an object 
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is present or not, but not providing information on the actual 

object location. To perform localization, one can take a sliding 

window approach, but this strongly increases the computational 

cost because the classifier function has to be evaluated over a 

large set of candidate sub-windows [2].  

The later approach to deal with computational cost was to 

extract some region proposals (boxes) and check if any of those 

boxes contain any object. The approach is called Region based 

Convolutional Neural Network (R-CNN), which did selective 

search so it used some deterministic algorithm that extracted 

about 2 thousand potential bounding boxes for an image before 

running through CNN. However, the model is still slow but has 

less error in localization. Later on, several improved versions 

have been published, refer to Fast R-CNN and Faster R-CNN 

[3]. 
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To deal with the term of speed, another approach called 

YOLO was introduced by [4]. YOLO performed frame object 

detection as a regression problem to spatially separated bounding 

boxes and associated class probabilities. YOLO was the first 

object detection network to combine the problem of drawing 

bounding boxes and identifying class labels in one end-to-end 

differentiable network. Although YOLO is the fastest, it 

struggles to localize objects correctly compared to Fast R-CNN. 

There are three improved versions of YOLO with the same 

author [4,5], and the last version of YOLOv4 [6]. 

As the computing power of modern Central Processing Unit 

(CPU) and Graphics Processing Unit (GPU) rapidly increases in 

the last few years, that made it possible to train a new neural 

network faster using Nvidia GPU and run multiple neural 

networks in parallel on a smaller computer like Jetson nano for 

object detection. 

Landing an UAV is a very challenging problem. Pilots have 

to spend a huge amount of time practicing landing technique in 

order to minimize any risk that is involved during the landing 

phase. 

2. METHODOLOGY 

2.1 Existing methods 

Refer to [7], the author proposed an approach to detect 

helipad in order to achieve high accuracy of pose measurements 

of a real-time application. The algorithm consists of 3 main 

steps, concerning the helipad detection and pose estimation, such 

as image acquisition and preprocessing, helipad mark extraction 

and corner detection of the helipad. 

Rungta et al. [8] proposed a method to autonomously detect 

Helipads in real time. The author used the method called 

modified Image-Based Visual Servoing (IBVS). Once the 

tracking starts the modified IBVS method starts publishing 

velocity to guide the quadrotor onto the helipad. 

However, those proposed approaches do not involve 

machine learning or deep learning model. Deep learning has 

many potential applications [9,10] and it has the ability to detect 

many types of Helipads and many classes. The reasons deep 

learning is suitable for this particular task are: it can detect many 

types of Helipads (Every image that has a sign of a circle around 

letter H), and use the same model to detect more classes (our 

future work) such as obstacles. 

2.2 Proposed method 

This paper considers using YOLOv4-tiny transfer learning 

model to detect Helipad in real time. It is also the best trade-off 

model for our application and simple to work with, compared to 

other models [6]. 

This paper is organized as follows: In section 2, the 

architecture of YOLOv4 is illustrated and we explain how the 

Helipad images were prepared before training. The Loss function 

is derived to visualize how good the model is. In section 3, the 

evaluation metrics are presented to validate the results. Section 

4 illustrates how the transfer learning is done and the result is 

discussed. Finally, the conclusion is drawn in section 5. 

2.3 YOLOv4 architecture 

Fig. 1 illustrates the combined architecture from different 

methods which is divided into Backbone, Neck and Head. 

YOLOv4’s architecture is composed of Cross Stage Partial 

Network (CSPDarknet53) [11] as a backbone, spatial pyramid 

pooling [12] as additional module, Path Aggregation Network 

(PANet) [13] as the network neck and finally YOLOv3 [5] as the 

network head. CSPDarknet53 is a novel backbone that can 

enhance the learning capability of CNN. The spatial pyramid 

pooling block is added over CSPDarknet53 to increase the 

receptive field and separate out the most significant context 

features. The PANet is used as the method for parameter 

aggregation for different detector levels. 

2.4 YOLOv4 data augmentation 

The important part that YOLOv4 has improved is in data 

preparation. Data augmentation is really important in computer 

vision technique. The image augmentation in YOLOv4 includes 

crop, rotation, flip, hue, saturation, exposure, aspect, mix up, cut 

mix, mosaic and blur. These actions are done programmatically 

in the YOLOv4 model. 

Fig. 1. YOLOv4 combined architecture 
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2.5 Image data pre-processing 

Helipad images are collected from the internet and video’s 

snapshots. To enhance the diversity and richness of the 

experimental data, the images are collected by using 

augmentation technique in terms of scaling, flopping, changing 

brightness, blurring and others. We collected 241 images which 

were randomly split into 76% for training samples. Thus, we got 

184 images for training and 57 images for validation. We 

collected random size of images which were later resized to 

416 × 416 image size to match the network dimensions.  The 

training and validation images are labelled by using an 

annotation tool, called LabelImg [14], before training (Fig. 2). 

 

Fig. 2. Image pre-processing 

2.6 Loss function 

Loss function defines how the prediction is good or bad. It 

plays a very important role in any statistical model. Loss function 

defines an objective which the performance of the model is 

evaluated against and the parameters learned by the model are 

determined by minimizing a loss function. 

Deep learning discovers a very complicated structure in 

large datasets by using optimization algorithms to optimize 

objective function and then the internal parameters, which are 

used to represent in each layer, are updated in order to minimize 

the loss function. Therefore, object detection problems can be 

cast as the optimization of the loss function requiring 

minimization with respect to all parameters. In another word, 

when the parameters are updated, we hope that the loss function 

will converge to zero for the best model. 

The YOLOv4 loss function consists of three parts such as 

regression loss, classification loss and confidence loss. 

Classification loss and confidence loss remain the same as the 

YOLOv3 model. However, Complete Intersection over Union 

(CIoU) [15] is used to replace the Mean Squared Error (MSE) to 

optimize the regression loss (Fig. 3). 

The CIoU loss can be defined as 

 
𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +

𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (Eq. 1) 

where: 

𝜌2(𝑏, 𝑏𝑔𝑡) = the Euclidean distance between the center 

points of the prediction box and the ground truth box. 

𝑐 = the diagonal distance of the smallest closed area 

that can simultaneously contain the prediction box and 

the ground truth box, shown in Fig 3. 

𝛼 = trade-off parameter and 𝑣 measures the 

consistency of aspect ratio. 

 

Fig. 3. Complete Intersection over Union (CIoU) 

And 𝛼 and 𝑣 can be defined as 

 𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
 (Eq. 2) 

 
𝑣 =

4

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
)

2

 (Eq. 3) 

The confidence loss can be defined as 

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗[𝐶̂𝑖 log(𝐶𝑖)

𝐵

𝑗=0

𝑆2

𝑖=0

+ (1 − 𝐶̂𝑖) log(1 − 𝐶𝑖)]

− 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗[𝐶̂𝑖 log(𝐶𝑖)

𝐵

𝑗=0

𝑆2

𝑖=0

+ (1 − 𝐶̂𝑖) log(1 − 𝐶𝑖)] 

(Eq. 4) 

The classification loss can be defined as 

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = − ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ [𝑝̂𝑖(𝑐) log(𝑝𝑖(𝑐))

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

+ (1 − 𝑝̂𝑖(𝑐) log(1 − 𝑝𝑖(𝑐))]  

(Eq. 5) 

Finally, the total loss function is: 

 
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑠 (Eq. 6) 

𝑆2 represents 𝑆 × 𝑆 grids of an image, each grid generates 

𝐵 candidate boxes, each candidate box gets corresponding 

bounding boxes through the network. If there is no object (noobj) 

in the box, only the confidence loss of the box is calculated. The 

confidence loss function uses cross entropy error and is divided 

into two parts: there is the object (obj) and no object (noobj). The 

loss of noobj increases the weight coefficient 𝜆, which is to 

reduce the contribution weight of the noobj calculation part. The 

classification loss function also uses cross entropy error. When 

the j-th anchor box of the i-th grid is responsible for certain 
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ground truth, then the bounding box generated by this anchor box 

will calculate the classification loss function. 

3. EVALUATION METRICS 

3.1 Intersection over Union (IoU) 

The ground truth box is drawn by hand when labelled the 

image. Thus, it is sure that the object exists in the box. 

Assuming that it is a blue box in Fig. 4. 

 The predicted bounding box is generated from the model 

detector that indicates the location of the object predicted. 

Assuming that it is a red box in Fig. 4. 

 The IoU metric consists in calculating how much the 

predicted bounding box overlaps with the ground-truth one. 

 
𝐼𝑜𝑈 =

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (Eq. 7) 

Fig. 4 illustrates the overlap between ground truth box and 

predicted bounding box from poor to perfect. When 𝐼𝑜𝑈 is closer 

to one, it is perfect. In contrast, it is poor when 𝐼𝑜𝑈 is getting 

closer to zero. 

 

Fig. 4. Intersection over Union 

3.2 Precision, Recall and mean Average Precision (mAP) 

•  TP (True Positive) is when the model detects object when 

the object is present and the 𝐼𝑜𝑈 > 0.5. 

 

•  TN (True Negative) is when the model does not detect object 

when the object is absent. 

 

•  FP (False Positive) is when the model detects object when 

the object is absent or the 𝐼𝑜𝑈 ≤ 0.5. 

 

•  FN (False Negative) is when the model does not detect 

object when the object is present. All shown in Fig. 5. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(Eq. 8) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(Eq. 9) 

 
𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 (Eq. 10) 

 
 
Fig. 5. Predicted bounding generated on Heliport 
 

The average precision (AP) will be the area of a plotted 

graph of precision versus recall for one class. And the mean 

average precision (mAP) is the mean value of average precision 

of all classes. In this paper, we predict only one class, thus, the 

average precision and mAP is exactly the same. 

4. RESULTS AND DISCUSSION 

4.1 Environment and requirements 

The implementation environment to train the model was a 

personal laptop, MSI GS63 7RD that runs on Windows 10 

operating system with Intel(R) Core(TM) i7-7700HQ CPU @ 

2.80GHz and 16GB of RAM. The model was trained by using a 

NVIDIA GPU (GTX 1050, 2GB of VRAM). With this 

environment, the model runs at 22 average frames per second. 

The model was trained on a darknet framework which was 

adapted from [16]. The system is coded in Python language. 

Table 1 is the requirement dependencies which have to be 

installed in order to train the model on GPU and GPU 

acceleration to save time when training and decrease the time 

inference when running the model. 
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Table 1 List of dependencies 

Dependencies Used version Recommended 

version 

Cmake 3.20 ≥ 3.18 

CUDA 11.2 ≥ 10.2 

cuDNN 8.1.1 ≥ 8.0.2 

OpenCV 4.5.1 ≥ 2.4 

GPU CC 6.1 ≥ 3.0 

For OpenCV, we built from source with CUDA and cuDNN 

enabled. Table 2. shows the requirement VRAM during training 

with batch size of 64 and 416x416 input image size. Since the 

computer mentioned in 4.1 has only the VRAM of 2GB about 

1907 MiB, the YOLOv4-tiny has been chosen as the training 

model configuration and it is possible to use 8 subdivisions. 

Table 2 VRAM requirement during training (MiB) 

Subdivisions 64 32 16 8 4 

YOLOv4 4236 6246 ? ? ? 

YOLOv4-tiny 814 956 1321 1752 2770 

YOLOv4-tiny-3l 830 1085 1282 1862 2982 

4.2 Training 

Since YOLOv4-tiny was originally created to be trained on 

a COCO dataset containing 80 classes, some small changes had 

to be made to the structure of YOLO. This was achieved by 

changing the number of filters and classes that existed in each 

YOLO layer. It is also necessary to change the number of 

maximum batches and steps. 

 
𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (4 + 1 + 𝐶) ∗ 3 

 
(Eq. 11) 

 
𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 ∗ 𝐶 

 
(Eq. 12) 

 
𝑆𝑡𝑒𝑝𝑠 = 0.8 ∗ 𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠, 0.9

∗ 𝑚𝑎𝑥𝑏𝑎𝑡𝑐ℎ𝑒𝑠 
(Eq. 13) 

where C is the number of classes. 

Table 3 Hyper parameters used during training 

Hyper parameters Value 

Max batches 4000 (minimum 4000) 

Batch 64 

subdivisions 8 

Weight decay 0.005 

momentum 0.9 

Learning rate 0.00261 

Steps 3200,3600 

Since we have only one class for landing site, we got the 

number of 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 18. The maximum batches should not be 

less than 4000 even 𝐶 = 1, thus, we choose 𝑚𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =
4000. 

Every layer of YOLOv4-tiny uses leaky ReLU as the 

activation function except for the last 2 convolutional layers of 

[yolo].Eq. 11, Eq. 12, Eq. 13, and Table 3 are modified and saved 

in yolov4-tiny-train.cfg and yolov4-tiny-test.cfg, shown in Fig. 

6. 

 

Fig. 6. Flow process of YOLOv4-tiny transfer learning 

While training, we use the pre-trained weight yolov4-

tiny.conv.29. The weight file is saved once every 1000 iterations. 

After the training is complete, the final weight and the best 

weight are saved. After that, the best weight is used to replace 

yolov4-tiny-conv.29 for testing images and video. 

4.3 Results 

Fig. 7 illustrates the average loss function and mAP for 4000 

iterations. The result shows that the average loss converges to 

zero. At the 4000th iteration the average loss is 0.0138 which 

shows that the model is really good. Moreover, the mAP at the 

end of training is 100% which is the best for one class detection. 

We use 57 testing examples to validate the model. The result 

shows in Table 4 and 5. We validated with 𝐼𝑜𝑈 = 0.5 and 𝐼𝑜𝑈 =
0.75. Thus, mAP is calculated with different 𝐼𝑜𝑈. We got 100% 

mAP at 𝐼𝑜𝑈 = 0.5 and 94.48% mAP at 𝐼𝑜𝑈 = 0.75. 

Table 4 Validation with 𝐼𝑜𝑈 = 0.5, (𝑚𝐴𝑃@0.5) = 1 

TP FP FN Precision Recall Miss rate AP 

57 3 0 0.95 1 0 1 
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Table 5 Validation with 𝐼𝑜𝑈 = 0.75, (𝑚𝐴𝑃@0.75) = 0.944 

TP FP FN Precision Recall 
Miss 

rate 
AP 

54 6 3 0.9 0.95 0.05 0.9448 

 

 

Fig. 7. Visualization of Loss (blue) and mAP (red) 

 

 

Fig. 8. Helipad detection of 4 frames extracted from a testing videod 

(A, B C and D). 

Fig. 8 shows Helipad detection of some frames in a testing 

video. The model can correctly detect the Helipad from far away 

(small object) with 98% confidence and 100% confidence for 

others. 

5. CONCLUSIONS   

In this paper, the Landing site (Helipad or Heliport) 

detection based on YOLOv4-tiny transfer learning model is 

proposed. The model looks at the image only once to perform 

detection. The testing images prove that the model is good at 

detecting the landing site with 0% of miss rate, 100% mAP at 

IoU=0.5 and 5% miss rate, 94.48% mAP at IoU=0.75. Moreover, 

the testing video shows that the model accurately detects the 

landing site with the speed of 22 average FPS. For future work, 

we should consider implementing Helipad detection on an actual 

UAV and using the model to detect more classes. 
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