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Abstract: The robot localization is a crucial task that needs to be solved as a part of the navigation problem for an autonomous robot. In 

order to estimate the location of a robot in the environment, various sensors are used to extract meaningful information from measurements to 

acquire knowledge about the robot’s environment and motion. Due to the fact that the sensor uncertainty is random, it is impossible to find an 

accurate pose for the robot by only one senso,r and the accuracy of any sensor is generally related to its price. Sensor fusion technique is a 

wellknown approach to give the best estimate robot location and how certain it is by combining data from two or more inexpensive sensors. 

In this paper, the estimation of the robot’s new pose given the previous pose and error-accumulated odometry is proposed based on the fusion 

of data from wheel encoders and the Inertial Measurement Unit (IMU) for a differential drive mobile robot. The robot has a very simple driving 

mechanism that is quite often used in practice, especially for service mobile robots. The required mathematical models of the robot and indoor 

localization system are derived. The mathematical tool for sensor fusion is the Kalman filter which provides the optimal estimate of the system 

state, and robot configuration, assuming that the noise from each sensor is zeromean and Gaussian. The robot was driven in two different 

cases; circular trajectory and square trajectory to evaluate the performance and consistency of the robot localization. The experimental result 

shows the effectiveness of the proposed work for the robot’s pose estimation. 

Keywords: Mobile robot; Differential Drive; Pose estimation; Kalman Filter 

1. INTRODUCTION1 

The research of the mobile robot has been being 

developed rapidly in various fields not only from scientific 

and engineering perspectives but also with expansion to 

logistics, service, or social robots nowadays. One of its kinds, 

the differential driven two-wheels chassis concept has been 

considered as high mobility with good stability. While 

advanced simulation and computing programs, such as 

MATLAB/Simulink provides the tools for modeling, 

simulating, and analyzing multidomain dynamical that also 

includes the mobile robots. The mathematical models of a 

mobile robot with different levels of accuracy based on the 

mathematical and physical relations will be used as a basis for 

simulation models programing. These will be useful during 

the robot prototype design process as well as advanced control 

designed. 

Knowledge of the estimation of location (pose estimate) 

is a key factor in many applications related to the autonomous 

system in robotics. The main challenge of localization is to 

find an accurate pose which is not possible using only one 

sensor due to sensor uncertainty problem (Thrun et al., 2005). 
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Many attempts to solve this problem, such as finding an 

accurate pose either by developing new sensors to measure 

the pose accurately or combining signals from several sensors 

to get better information from different sources which can 

help to correct estimated pose or by improving fusing 

algorithms such as Kalman filter (KF), particle filter, etc. 

(Elmenreich, 2002; Bräunl, 2008). Most of the sensors are 

imperfect and susceptible to noisy measurements. Fusing data 

measurements from multiple sensors is an ideal solution up to 

date to this problem. In this research, an indoor wheeled 

mobile robot pose has been estimated based on sensor fusion 

utilizing Kalman Filter (KF) which provides the optimal 

estimate of the system state, and robot configuration in this 

study, assuming that the noise is zero-mean and Gaussian. 

This filter is a recursive algorithm that, at each time step, 

updates the optimal estimate of the unknown true 

configuration and the uncertainty associated with that 

estimate based on the previous estimate and noisy 

measurement data (Corke, 2017). 

The essential aim of this work is to estimate an accurate 

indoor mobile robot pose from multiple inexpensive 

inaccurate sensor models. To achieve this goal, the following 
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steps have been done. First of all, kinematic equations 

describing the wheeled mobile robot (WMR) motion are 

derived to offer a general framework for simulation analysis 

and model-based system control design. Secondly, a 

theoretical location model of the robot from sensors is derived 

to further refine the measured data. The sensors chosen are 

the Inertial Measurement Unit (IMU) and Encoder. The 

measurement from IMU and encoder is recorded every time 

step during the movement. Finally, the Kalman Filter (KF) is 

utilized as a sensor fusion technique to fuse those sensors. The 

technique proves the accuracy of the estimated pose is 

improved and well-functioned. 

2. KINEMATICS MODEL AND CONTROL 

2.1 Kinematics of the Differential Drive Mobile Robot 

Differential Drive Mobile Robot (DDMR) is a very 

simple driving mechanism that is quite often used in practice. 

The robot with this drive usually has one or more castor 

wheels to support the vehicle and prevent tilting. Fig.1. shows 

the kinematics of differential drive robot model with one 

castor wheel in a 2-D Cartesian workspace. Both main wheels 

are placed on a common axis and the velocity of each wheel 

is controlled by a separate motor.   

 

Fig.1. A Differential Drive Mobile Robot 

At first, two different coordinate systems are defined, the 

global coordinate system {𝑋𝑖 , 𝑂, 𝑌𝑖} and the robot coordinate 

system [𝑋𝑅 , 𝐶, 𝑌𝑅] shown in Fig. 1. The global coordinate 

system is fixed to the Cartesian workspace, and the robot 

coordinate system is attached to the mobile platform.  

For the control purpose, it is often required to define the 

kinematic model for wheel velocities. Robot kinematic model 

allows us to represent the robot velocities as a function of the 

driving wheels velocities along with the geometric parameters 

of the robot. The distance between the driven wheels is  

denoted as 2𝑑. Denote [𝑥𝑐 , 𝑦𝑐]
𝑇 as the spatial position of the 

robot center 𝐶, and 𝜙𝑐 is the robot orientation angle with 

respect to point 𝐶. The relationship between the velocity in 

the global coordinate system [�̇�𝑐 , �̇�𝑐, �̇�𝑐]
𝑇
and the velocity 𝑣 =

[𝑣𝑐 , 𝜔𝑐]
𝑇 in the robot coordinate system can be described as  

 

[

𝑥�̇�

�̇�
𝑐

�̇�
𝑐

]

𝑖

= [
cos 𝜙 0

sin 𝜙 0

0 1

] [
𝑣𝑐

𝜔𝑐
]. (Eq. 1) 

 

During the movement of the DDMR, the wheels rotate 

with angular velocities �̇�𝑟 , 𝜙𝑙
̇  for the right and left wheel 

respectively. The linear velocities of each wheel of the robot 

are related to the wheel angular velocities by: 

{
𝑣𝑟 = 𝑟�̇�𝑟

𝑣𝑙 = 𝑟𝜙𝑙
̇
  (Eq. 2) 

Suppose that the robot coordinate system is aligned such 

that the robot moves forward along Χ𝑅 . Neither wheel can 

contribute to sideways motion in the robot coordinate system, 

and so �̇�𝑅 is always zero. Therefore, the velocity of the 

DDMR in the robot coordinate system is the average of the 

linear velocities of the two wheels: 

𝑣𝑐 =
𝑣𝑟 + 𝑣𝑙

2
= 𝑟

�̇�
𝑟
+ �̇�

𝑙

2
 (Eq. 3) 

 

and angular velocity of the DDMR is: 

 

�̇�𝑘 = 𝜔𝑐 =
𝑣𝑟 − 𝑣𝑙

2𝑑 
= 𝑟

�̇�
𝑟
− �̇�

𝑙

2𝑑
  (Eq. 4) 

 

Thus,  

 

[
𝑣𝑐

𝜔𝑐
]
𝑅

= [
𝑟 2⁄ 𝑟 2⁄

𝑟 2𝑑⁄ − 𝑟 2𝑑⁄
] [

�̇�
𝑟

�̇�
𝑙

] (Eq. 5) 

 

Eq. 1 and Eq. 5 define robot’s velocity according to point 𝐶 

for the global coordinate system, and represent the forward 

kinematic model of DDMR: 

[

�̇�𝑐

�̇�𝑐

�̇�
𝑐

]

𝑖

=
𝑟

2
[

cos 𝜙 cos 𝜙

sin 𝜙 sin 𝜙

1/𝑑 − 1 𝑑⁄
] [

�̇�
𝑟

�̇�
𝑙

] (Eq. 6) 

where a positive angular velocity of each wheel corresponds 

to forward motion at that wheel. 

2.2  Tracking Control  

The purpose of DDMR path tracking controller is to find 

a control law input [𝑣𝑐 , 𝜔𝑐]
𝑇  that the robot can track a desired 
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trajectory [𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝜙𝑑(𝑡)]𝑇 in the global coordinate 

system. The tracking error in the robot coordinate system is 

defined as [𝑒𝑥(𝑡), 𝑒𝑦(𝑡), 𝑒𝜙(𝑡)]
𝑅

𝑇
. The relationship between 

the tracking errors in the global and robot coordinate systems 

can be obtained by geometrical projection transformation as:  

[

𝑒𝑥

𝑒𝑦

𝑒𝜙

]

𝑅

= [
cos 𝜙 sin 𝜙 0

−sin 𝜙 cos 𝜙 0

0 0 1

] [

𝑥𝑑 − 𝑥𝑐

𝑦
𝑑
− 𝑦𝑐

𝜙
𝑑
− 𝜙𝑐

] (Eq. 7) 

The control problem will be to determine a control rule 

for the DDMR, which can estimate [𝑣𝑐 , 𝜔𝑐]
𝑇  that make the 

system asymptotically stable. The tracking control law of a 

typical backstepping technique is given as:  

[
𝑣𝑐

𝜔𝑐
] = [

𝑘1𝑒𝑥 + 𝑣𝑑 cos 𝑒𝜙

𝜔𝑑 + 𝑘2𝑣𝑑𝑒𝑦 + 𝑘3𝑣𝑑 sin 𝑒𝜙
] (Eq. 8) 

where 𝑘1, 𝑘2, and 𝑘3 are positive constants. In addition, 

Lyapunov stability analysis is also used to prove the system 

stability and convergence of tracking errors to zero (Dierks & 

Jagannathan, 2007; Tsai et al., 2004).  

  SENSORS FUSION 

Sensor fusion is a method used to combine data from 

multiple sensors that measure the same quantity to estimate a 

more accurate and reliable. Sensors detect a change in the 

environment and give a signal proportional to this change, 

then this signal is handled by signal processing units, finally,  

a fusion sensor algorithm is applied to give a stable and 

accurate signal out of noisy signals. There are many 

algorithms to implement sensor fusion. The most commonly 

used algorithm is Kalman Filter and its family, (Elmenreich, 

2002; Thrun et al., 2005). 

3.1 Inertial Measurement Unit (IMU) 

Inertial based sensor methods, which commonly called 

inertial measurement units (IMU), are comprised of sensors 

such as accelerometers, gyroscopes, and magnetometers. 

These sensors usually deploy together in robots and 

navigation systems.  

 Accelerometer: it is a sensor that measures linear 

acceleration. The result produced by an accelerometer for 

mobile robots has been unsuitable and of poor accuracy 

due to the fact that they suffer from extensive noise and 

accumulated drift.  This can be compensated by the use 

of a gyroscope.  

 Gyroscope: it measures the angular velocity. Gyroscopes 

run at a high rate, allowing them to track fast and abrupt 

movement. However, they suffer from serious drift 

problems caused by the accumulation of measurement 

errors over long periods.  

 Magnetometer: it is another sensor used to determine the 

heading angle by sensing the Earth’s magnetic field. 

There is a drawback of using magnetometers for indoor 

positioning because of the presence of metallic objects in 

the environment that could influence measurement data 

collection during operation. 

When working with a sensor unit containing an IMU, few 

reference coordinate systems have to be presented. The three 

major coordinate systems are illustrated in Fig.2. 

 

Fig.2. Reference Coordinate System 

The sensor chosen for measuring position and orientation 

was a BNO055 (Townsend, 2019). This is a relatively new 

chip that is designed for high fidelity navigation applications. 

This sensor includes three triaxial sensors for measuring 

acceleration, angular rate, and magnetic fields. The chips have 

an integrated ARM Cortex-M10 based processor, which 

performs the sensor fusion and filtering on its own. The 

maximal update frequency is 100Hz for the Angular Velocity 

Vector. 

3.2 Localization Using Wheel Encoders 

The odometer is the measurement of wheel rotation. 

When odometry measurement is known as a function of time 

from two wheels on a common axle, the position and 

orientation of the center of the axle can be determined as a 

function of time. Generally, the pose of a robot is represented 

a the vector: 

𝑝 = [

𝑥
𝑦
𝜙

] (Eq. 9) 

For a diff-drive robot, the position can be estimated 

starting from a known position by integrating the movement 

(summing the incremental travel distance). For a discrete 

system with fixed sampling interval Δ𝑡, the incremental travel 

distance are (Siegwart et al., 2011):  
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[

Δ𝑥
Δ𝑦
Δ𝜙
Δ𝑠

] =

[
 
 
 
 
 
 
 Δ𝑠 cos (𝜙 +

Δ𝜙

2
)

Δ𝑠 sin (𝜙 +
Δ𝜙

2
)

Δ𝑠𝑟 − Δ𝑠𝑙

2𝑑
Δ𝑠𝑟 + Δ𝑠𝑙

2 ]
 
 
 
 
 
 
 

  (Eq. 10) 

where: 

Δ𝑠𝑟; Δ𝑠𝑙  : denotes traveled distance for the righ and left wheel 

respectively,  

Δ𝜙 : denotes angular displacement for the robot. 

Then, we further obtain the basic equation for odometric 

position update at time 𝑘 + 1 for differential drive mobile 

robot: 

𝑝𝑘+1 = [

𝑥
𝑦
𝜙

]

𝑘+1

= [

𝑥𝑘 + Δ𝑥𝑘

𝑦𝑘 + Δ𝑦𝑘

𝜙𝑘 + Δ𝜙𝑘

] (Eq. 11) 

3.3 Kalman Filter 

Kalman Filter is an optimal estimation algorithm. It is a 

recursive filter for estimating and filtering a linear Gaussian 

system. Kalman filter assumes linear state transitions as well 

as linear measurement (Brown, 1983; Elmenreich, 2002; 

Grossmann, 1998; Srang, 2014). A linear system is 

represented in state-space:  

x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 + v𝑘  
z𝑘+1 = 𝐶x𝑘+1 + w𝑘+1  

(Eq. 12) 

Table 1. Meaning of matrices in the Eq. 12 

Variables Meaning 

x𝑘  State vector of the dynamical system in ℝ𝑛𝑥  

u𝑘  Input vector in ℝ𝑛𝑢 

z𝑘  Measurement of dynamical system in ℝ𝑛𝑧 

𝐴  The state transition matrix in ℝ𝑛𝑥×𝑛𝑥   

𝐶  An observation matrix in ℝ𝑛𝑧×𝑛𝑥 

𝐵  Control input matrices in ℝ𝑛𝑥×𝑛𝑢 

v𝑘  

Independent process noise vector that is 

assumed to be zero-mean Gaussian with the 

covariance Q, i.e., v𝑘~𝑁(0, 𝑄)  

w𝑘  

Independent measurement noise vector that is 

assumed to be zero-mean Gaussian with the 

covariance 𝑅, i.e, w𝑘~𝑁(0, 𝑅) 

The well-known Kalman Filter algorithm for Eq. 12 is 

given by the steps following: 

 Initialization: 

Select any initial state estimate and its positive definite error 

covariance matrix which are denoted as �̂�0|0 and 𝑃0|0 

respectively. 

 Time Update: 

x̂𝑘+1|𝑘 = 𝐴x̂𝑘|𝑘 + 𝐵u𝑘 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄 

(Eq. 13) 

 Measurement Update: 

ẑ𝑘+1|𝑘 = 𝐶x̂𝑘+1|𝑘 , 

𝑃xz,𝑘+1|𝑘 = 𝑃𝑘+1|𝑘𝐶
𝑇 , 

𝑃zz,𝑘+1|𝑘 = 𝐶𝑃𝑘+1|𝑘𝐶
𝑇 + 𝑅 , 

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 +

𝑃xz,𝑘+1|𝑘 𝑃zz,𝑘+1|𝑘
−1  (z𝑘+1 − ẑ𝑘+1|𝑘) , 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 −

𝑃xz,𝑘+1|𝑘𝑃zz,𝑘|𝑘+1 
−1 𝑃xz,𝑘+1|𝑘

𝑇  . 

 

(Eq. 14) 

In term of the Kalman gain,  

 

𝐾𝑘+1 = 𝑃𝑥𝑧,𝑘+1|𝑘 𝑃𝑧𝑧,𝑘+1|𝑘
−1  (Eq. 15) 

 

The measurement update can be rewritten as: 

 

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + 𝐾𝑘+1(z𝑘+1 −

 𝐶x̂𝑘+1|𝑘) , 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝑃zz,𝑘+1|𝑘𝐾𝑘+1
𝑇 .     

 

(Eq. 16) 

 

We use Kalmn filter to estimate the yaw angle 𝜙𝑘 of the 

DDMR, and we use the gyroscope’s angular velocity denoted 

by 𝜔𝑘 as the system input to make the prediction. The angle 

change Δ𝜙𝑘 obtaited by the encoder is added to the previous 

estimate as the observed value. The sensor fusion model 

based on Kalman filter is shown in Fig.3. Then, in the state 

equation, the state transition matrix 𝐴 = 1, input u = 𝜔𝑘, 

input matrix 𝐵 is the time difference Δ𝑡, and 𝐶 = 1. 

 

Fig.3. Sensor fusion model 

The process noise covariance due to inertial sensor is 

given as 𝑄, and the measurement noise covariance from 
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encoder model is 𝑅. Although the covariance matrices are 

supposed to reflect the statistics of the noise, the true statistic 

of the noise is not known. Thus, 𝑄 and 𝑅 are usually used as 

tuning parameters that we can adjust to get the prospective 

performance.  

3. RESULTS AND DISSCUSION  

In this work, the experiments were performed to test the 

proposed localization method by combining two independent 

sensors. For comparison purposes, the full system fusing IMU 

measurement and wheel encoders are compared to the 

reduced system only wheel encoders. A laptop is fixed to the 

robot and collected all the needed measurements. To estimate 

the position, the mobile robot moves as drawing circles and 

squares in the interest space.  

Table 2. Trajectory equations of robot moving 

Name of 

Trajectory  
Trajectory Equations 

Circular  
𝑥 = 𝑟 cos(𝜔𝑟𝑡), 𝑦 = 1 − 𝑟 sin(𝜔𝑟𝑡), 

𝜙 = 0, where 𝑟 = 1.5𝑚,𝜔𝑟 = 0.1𝑟𝑎𝑑/𝑠. 

Square 

𝑥 = 𝑑 ∗ 𝑎𝑏𝑠(sin(𝜔𝑡)) ∗ sin(𝜔𝑡), 
𝑦 = 𝑑 ∗ 𝑎𝑏𝑠(cos(𝜔𝑡)) ∗ cos(𝜔𝑡), 

𝜙 = 0, where 𝑑 = 1.5𝑚,𝜔 = 0.1𝑟𝑎𝑑/𝑠. 

 

 

Fig.4. Circular trajectory tracking 

The following Figs .4-7 show the experimental results in 

both case of robot moving for 𝑡 = 120 seconds and for 10ms 

of sampling time. Although difference between estimated 

positions were at the small rate, the positioning using only 

encoder has shown negative bias due to the slips between 

wheels and ground, and unbounded position error due to the 

calculated yaw angle changes faster than the true yaw angle. 

In the experiment results, the proposal algorithm provides 

reliable position with acceptable level compared to the 

method that only used encoder. 

 

Fig.5. Square trajectory tracking 

 

Fig.6. Circular motion trajectories with respect to time 
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Fig.7. Square motion trajectories with respect to time 

4. CONCLUSIONS   

In conclusion, we have discussed position estimation of 

mobile robot in indoor localization. Using the Kalman filter 

method to fuse two different sensors can guarantee robustness 

in position displacement and reduce the accumulated errors 

for a differential drive mobile robot. The aim to design an 

accurate localization system for this robot was made using a 

sensor fusion from IMU and wheel encoders. The proposed 

method compensates for the yaw angle errors that generate 

position errors in wheel encoders measurement. Therefore, it 

has smaller position errors and no drift over time. 
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