
Techno-Science Research Journal 8 (2020) 134-139

Content list available at ITC

Techno-Science Research Journal

Journal Homepage: www.ric.itc.edu.kh

134

Simultaneous Localization and Mapping Using Intel RealSense Camera

Tongly Mork*, Sarot Srang, Daro Van

Department of Industrial and Mechanical Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O.

Box 86, Phnom Penh, Cambodia

Received: 29 June 2020; Accepted: 24 October 2020; Available online: xxxx

Abstract: This paper provides Simultaneous Localization and Mapping (SLAM) for generating a 3D map of an environment. It takes the

approach of graph-based SLAM with loop closure detection in the use of RGB-D (Red, Green, Blue and Depth) camera to generate the 3D

map of an unknown environment. In real-time applications, localization and mapping require both accuracy and robustness. Thus, in this

paper, a lighter weight Intel RealSense d435i RGB-D (with build-in IMU) camera is chosen as the sensor. The data from Intel RealSense d435i

camera is computed by Jetson Nano, a single board computer which runs Robotic Operating System (ROS) and extracted to RTAB-Map node

(Real-Time Appearance-Based Mapping) in ROS environment to perform the SLAM. The RTAB-Map uses the RGB data along with depth and

IMU information to build the 3D map of an environment. RGB image data and depth data with IMU data are computed to get key features

such as dense point cloud, and depth of RGB pixels. These features in different scenes are matched to calculate the motion of the camera. This

can lead to find the odometry of the camera and construct the 3D map of the surrounding environment. Particularly, the result in this paper

was conducted indoor and outdoor environment and compared to observe the difference of the quality of both environments by using Rviz

simulator based on ROS to visualize the 3D map in real-time.

Keywords: SLAM; RGB-Depth d435i camera; ROS; Rtab-map

1. INTRODUCTION1

Since the 21st century, with the rapid economic and social

development and the ever-changing science and technology,

some problems in military, transport, traffic safety, industrial

production and cruise protection need to be solved and

optimized urgently (Duzhen, 2018). Within the rapid

development of artificial intelligence, machine vision,

automatic control, navigation and other disciplines, the

enthusiasm for researching and developing robot is noticeably

increasing (Das, 2018). Moreover, researches robots for

exploring an unknown environment are establishing every

year. For exploration, the localization and mapping in a

variety of complex environments are prerequisite for the

robots to accomplish tasks.

Simultaneous localization and mapping (SLAM) of the

robot relies on various types of sensors, for example, LiDAR

(Light Detection and Ranging, depth sensor, tracking sensor,

RGB image sensor or other related sensors that are needed in

SLAM algorithm (Apriaskar, 2017). Robots use SLAM

algorithm by accurately digesting the information of itself and

the environment to accomplish tasks more effectively and

* Corresponding author: Tongly Mork

E-mail: tongly_mork@oac.itc.edu.kh; Tel: +855-964292365

safely. The SLAM method can improve the autonomous

capabilities and environmental adaptability of a robot to

achieve autonomous localization and navigation in an

unknown environment (Carrio, 2019).

SLAM can process data from several different types of

sensors, and the powers and limits of various sensor types

have been a major driver of new algorithms. Recently, many

kinds of depth camera are chosen for SLAM algorithm to

generate a 3D point cloud of an environment surrounding the

robot, for example, Stereolabs ZED, Kinect, XtionPRO Live,

Realsense camera, and so on (Magnabosco & Breckon, 2013).

Intel RealSense camera d435i is chosen in this study.

This camera is very special for the SLAM algorithm because

it has built-in IMU (Inertial Measurement Unit) sensor inside

(Duzhen, 2018). IMU senor data are generated at the same

time as image data and depth data for use for 3D mapping and

navigation of the robots. Furthermore, SLAM algorithm does

not only need IMU data, depth data, and RGB data (image

data) that get from RealSense camera for building 3D map,

but also needs a feature matcher of all these data together to

perform 3D map. This feature matcher data is called RTAB-

http://www.ric.itc.edu.kh/
mailto:tongly_mork@oac.itc.edu.kh

Mork et al./Techno-Science Research Journal 8 (2020) 134-139

135

Map which runs in ROS (Robotic Operating System)

environment.

The emergence of modern RGB-D sensors had a

significant impact in many application fields, including

robotics, augmented reality (AR) and 3D scanning for 3D

scene reconstruction. Therefore, the purpose of this paper is

to investigate the following research directions: using SLAM

algorithm for an efficient exploration, performing

simultaneous localization and mapping for real-time 3D

reconstruction map. Also, this paper mainly designed and

made a SLAM for 3D mapping based on RGB-D camera. The

principle and framework of the SLAM algorithm are

introduced. The Intel RealSense D435i camera is used as a

RGB-D camera sensor to implement the SLAM algorithm

with Nvidia Jetson Nano as an embedded system.

2. METHODOLOGY

2.1. Configuration of 3D mapping

In this paper, the configuration of the 3D mapping system

is proposed based on ROS (Robotic Operating System). The

main components of the 3D mapping process are divided into

two parts, mapping part: SLAM algorithm using RTAB-Map

package in ROS run on Ubuntu 18.04 LTS with Jetson Nano,

a single board computer, and sensor part: RGB-D camera

from Intel RealSense camera d435i.

2.2. Intel RealSense camera

The data from the RealSense camera is very important for

using for the next section. RealSense cameras project infrared

light onto a scene and detect the reflection to measure depth

as shown in Fig. 1.

Fig. 1. The principle of depth measurement of RealSense

camera

The formula of the depth information from RealSense

camera to the object is retrieved in (Miles Hansard, 2012).

𝐷𝑒𝑝𝑡ℎ =
𝑐

2

𝛥𝜑

2𝜋𝑓
 (Eq. 1.)

where: c is the speed of light (𝑚/𝑠)

 ∆𝜑: phase different (𝑟𝑎𝑑)

 𝑓: IR light emitter signal frequency (𝑟𝑎𝑑/𝑠)

There are two principle sensors to measure the depth, and

place in the specific space with a small distance apart, namely,

IR emitter and receiver sensor. The camera takes the two

images from these two sensors and compares them. Since the

distance between the sensors is known, these comparisons

give depth information given in Eq. 1. The depth of the object

from the camera is represented depth colour of the image as

shown in Fig. 2. Moreover, from RealSense camera d435i, we

can get raw data of depth data, RGB data and IMU data. These

data will be used in the SLAM algorithm.

The data from the RealSense camera for using in section

2.6 need to be transfere from the camera to the computation

processor. For device communication, the Librealsense is

used. Librealsense is a cross-platform ROS package library

for using in Robotic Operating System (ROS) environment.

This can give the raw data form camera for computation in

the specific computational system. This effort was initiated to

better support researchers, creative coders, and computer

vision developers in domains such as robotic navigation,

object recognition, virtual reality, and the internet of things,

Unman Aerial Vehicle (UAV) and so on.

Fig. 2. Depth colour data from RealSense camera

2.3. Robotic Operating System

The Robot Operating System (ROS) is a flexible

framework for writing robot software. It is a collection of

tools, libraries, and conventions that aim to simplify the task

of creating complex and robust robot behaviour across a wide

variety of robotic platforms. When running rosnodes, those

nodes perform computations or processing data, and they may

require data from other nodes.

Furthermore, ROS is an open-source software framework

which is developed in the use of robot software application. It

provides functions like an operating system in a computer,

such as hardware layer abstraction, low-level device control,

implementation of commonly-used functionality, message-

Mork et al./Techno-Science Research Journal 8 (2020) 134-139

136

passing between processes and packages management from

one node to other nodes in the specific topic as shown in Fig.

3. ROS also provides tools and libraries that can be reused in

robotics research and development, particularly SLAM in this

study. One of the advantages of using ROS is that it can run

code across multiple platforms. There are important terms in

the architecture system of ROS, rosnode, rostopic and ros

master.

Fig. 3. Architecture of ROS

The ROS Master provides names and registration

services to the rest of the nodes in the ROS system. It tracks

publishers and subscribers to topics as well as services. The

role of the Master is to enable individual ROS nodes to locate

one another. Once these nodes have located each other, they

can communicate with each other peer-to-peer.

2.4. Intel RealSense camera and ROS communication

There are two prerequisites needed in RealSense-ROS

communication, namely ROS distribution for Ubuntu

operating system and librealsense_ros which is the RealSense

camera library for running in ROS environment. The two

prerequisites are important parts for achieving the RealSense

camera to communicate in ROS.

Thereafter, the ROS master needs to be launched. ROS

master or roscore is a collection of nodes and programs that

are pre-requisites of a ROS-based system. The roscore is

running for communication between ros node and other nodes

in specific of rostopics. It is launched using the roscore

command as shown in Fig. 4. Next, ROS nodes of RealSense

camera are being launched. Therefore, ROS environment for

publishing from RealSense camera node is required and

shown in Fig. 5. RealSense camera publishes nodes such as

IMU node, RGB node and depth node. For monitoring the

result, rviz ROS tool must be launched as shown in Fig. 6.

Terminal_1: Run ros master
$roscore

Fig. 4. ROS master terminal

Terminal_2: Launch realsense camera node
$cd catkin_ws

$source devel/setup.bash

$cd src/realsense-ros/realsense2_camera

$roslaunch realsense2_camera

rs_camera.launch

Fig. 5. launching RealSense camera node terminal

Terminal_3: rviz for monitoring
$cd catkin_ws

$source devel/setup.bash

$rviz

Fig. 6. rviz terminal

After realsense_camera node is launched in ROS, there

are many topics published by RealSense camera. Actually,

there is a 3D visualization tool for ROS-rviz that allows

visualizing the 3D image as shown in Fig. 7. This does not

have the ability to make point cloud reconstruction or 3D

Advertising

ROS

Node 1

ROS
Node 2

ROS

Topic

Subscribing

Registering Publishing

ROS
Master

Mork et al./Techno-Science Research Journal 8 (2020) 134-139

137

3D map

mapping, but it can configure RealSense camera d435i to

communicate to the ROS environment. The next section deals

with 3D mapping algorithm by using the data from the

communication of this section.

Fig. 7. Depth output of RealSense camera D435i visualize in

Rviz

2.5. RTAB-Map

RTAB-Map (Real-Time Appearance-Based Mapping) is

a ROS package that uses the data received from the depth

camera to perform Graph-Based SLAM, generating a dense,

colour point cloud, and odometry of the camera. Moreover,

Jetson Nano (single-board computer) which is running ROS

for computing the data from the camera to perform SLAM

base on RTAB-Map node as shown in Fig. 8.

When running the rtabmap node on ROS, rtabmap node

subscribes to the RealSense camera topic via ROS master that

included RGB image data, IMU data and depth data or

odometry data published at a different rate for using in SLAM

algorithm in section 2.6. Furthermore, Rtabmap can make

sure that images from the RealSense camera are correctly

synchronized together (François, 2019). If the camera data are

published on the network, the data format must be also

configured to synchronize RGB images, IMU data, depth data

before sending all these data to other node for SLAM

algorithm.

2.6. SLAM

The SLAM algorithms can be mainly divided into three

parts: raw data from RealSense camera (RealSense data info),

3D feature matching raw data (Rtab-map), and 3D map

performance as shown in Fig. 9.

rtabmap_ros/

rgbd_odometry

rtabmap_ros/

rtabmap

RGB camera info

Depth image, IMU

Rviz

raw depth,

IMU data

raw RGB

Image data

Feature

Extraction

Feature

Extraction

Feature Matching

3D Feature

Matching

Mapping

Motion

Transformation

Estimation

Pose Graph

Construction

Build 3D Map

RealSense camera info

Rtab-Map

3D map performance

in Rviz

Jetson Nano

Fig. 8. rtabmap ROS node process

Fig. 9. Block diagram of SLAM using RealSense camera

Mork et al./Techno-Science Research Journal 8 (2020) 134-139

138

The raw data from RealSense camera is performed in feature

detection and descriptor extraction into RGB images, depth,

and IMU feature, or points descriptors of the adjacent frames

are matched together, forming a 3D feature. When the motion

of the camera is detected, the 3D feature matching is

performed according to the matching results. Then, the

motion transformation is estimated and optimized for pose

graph construction. The SLAM algorithm constructs a pose

map according to the results of the feature matching data, then

performs closed-loop detection and optimization of the pose

map. Finally, the 3D mapping is generated from

reconstructing the environment that the RealSense camera is

pointing at.

3. RESULTS AND DISCUSSION

The result of the generated 3D map from reconstructing

the real-time mapping in this paper was obtained by

conducting experiment inside and outside of a building with

mapping time around 15 minutes. Fig. 10. and Fig. 11. show

the indoor 3D mapping. The 3D feature matching of RGB

data and depth data point cloud are better results than outdoor

mapping shown in Fig. 12. The 3D mapping indoor

environment is mapped with path planing continuously for 3D

reconstruction. However, the 3D reconstruction in the large

area of the outdoor environment is not feasible due to lighting

conditions and low depth range.

Fig. 10. Result of 3D mapping (Indoor)

Fig. 11. is the different perspectives of the indoor 3D map

that build using RealSense d435i. As we can see from the 3D

map, the wall, window, hollow space and other things can be

easily seen in the 3D map that was reconstructed by thousands

of point cloud matching with each RGB pixel. However, the

clear mirror cannot be found as it has absorbed much-infrared

ray, therefore the camera cannot get its depth information.

Also, the reflexed floor cannot be mapped due to the reflexing

surface will cause the infrared ray not to return to the IR pair

of the camera.

Fig. 11. Indoor 3D mapping in the detailed point cloud

The result of 3D mapping that is shown in Fig. 12. was

mapped in outdoor environment. The appearance of the

outdoor 3D mapping generated by using Intel RealSense

d435i camera can be seen clearly in the detail, and the

environment can be recongnized. The point cloud and RGB

texturing simultaneously match to generate how the things

look like, for example, the plants, the grass, concrete, and so

on. However, the 3D reconstructs of point cloud did not match

well due to light condition and limit of mapping rang of the

Intel RealSense d435i camera.

Fig. 12. Result of 3D mapping (Outdoor)

Moreover, to map these environments both indoor and

outdoor, the RealSense camera needs to move smoothly

steadily to get better 3D mapping as shown in Fig. 10. and

Fig. 12. However, the built-in IMU of RealSense d435i

camera can only keep track for a very short time. Moving or

turning too quickly would break the sequence of successful

point cloud matches, and cause the process losing track. The

system could recover immediately if the camera stops

moving, but if not, the longer the time passed, the farther away

it will drift from the correct position, and this will affect 3D

mapping with large error.

Mork et al./Techno-Science Research Journal 8 (2020) 134-139

139

4. CONCLUSIONS

In this paper, localization and mapping are based on

RTAB-Map for generating a 3D map in an environment.

SLAM algorithm uses RealSense d435i camera as 3D map

sensor which has RGB data, IMU data, and depth information

for publishing in ROS. The rtabmap is used for matching all

data from RealSense camera to build the 3D map and gets

updated from time to time upon receiving new data. The

SLAM algorithm extracts the features from the data of depth

camera and computes the odometry information through the

features matching of the adjacent image from rtabmap_ros

node, and build an environment map based on the location and

posture of the RealSense camera. It determine the location and

posture from an unknown environment to reconstruct the 3D

map. The results of the 3D mapping of both indoor and

outdoor are generated in Rviz of ROS environment with the

quality depend on the limited of depth camera range and light

condition of each environment.

As mentioned in section 3, the built-in IMU of RealSense

d435i camera can only keep track for a very short time.

Moving or turning too quickly would break the sequence of

successful point cloud matches and result in losing track.

Also, the 3D mapping that is generated from matching point

cloud and RGB texturing take a lot of computational of the

single-board computer Jetson Nano’s processor. So, for future

work, the computational of 3D mapping will be reduced by

lowering the the quality of depth point cloud and lowering the

resolution of the RGB texturing or using grayscale instead.

Expectedly, the computational task would be more efficient

for 3D mapping.

REFERENCES

Apriaskar, B. R. (2017). Simulation of Simultaneous

Localization and Mapping Using Hexacopter and

RGBD Camera. Automation, Cognitive Science,

Optics, Micro Electro-Mechanical System, and

Information Technology (ICACOMIT).

Duzhen, F. (2018). VSLAM and Navigation System of

Unmanned Ground Vehicle Based on RGB-D

camera. Faculty of Science and Engineering.
ShaneLoretz. (2020). Ubuntu install of ROS. Retrieved on 23

May 2020 from

http://wiki.ros.org/Installation/Ubuntu

Carrio, A. (2019). Onboard Detection and Localization of

Drone Using Depth Maps. IEEE.

François, M. (2019). Loop closure detection approach using

RTAB-Map. Retrieved on 17 April 2019 from

https://introlab.3it.usherbrooke.ca/mediawiki-

introlab/index.php/RTAB-Map

Das, S. (2018). Simultaneous Localization and Mapping

(SLAM) using RTAB-MAP. computer science

bibliography, DBLP: /corr/abs-1809-02989.

Doronhi. (2020). Github.com. Retrieved on 23 June 2020

from ROS Wrapper for Intel® RealSense™

Devices:

https://github.com/IntelRealSense/realsense-ros

Magnabosco, M., & Breckon, T. (2013). Cross-Spectral

Visual Simultaneous Localization And Mapping

(SLAM) with Sensor Handover. Robotics and

Autonomous Systems. 63 (2): 195–208.

doi:10.1016/j.robot.2012.09.023.

Miles Hansard, S. L. (2012). Time of Flight Cameras:

Principles, Methods, and Applications.

SpringerBriefs in Computer Science, ISBN 978-1-

4471-4658- 2. 10.1007/978-1-4471-4658-2 . hal-

00725654, pp.95,.

Intel. (2020). Intel® RealSense™ Technology. Retrieved on

25 May 2020 from

https://www.intelrealsense.com/stereo-depth/

