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Abstract: Assessing the characteristic of soil properties is important for various purposes, especially for agriculture. The spatial 

distribution mapping for soil properties in Chrey Bak Catchment can be generated by geospatial analyst (Ordinary Kriging) methods with 

different semivariogram models: Gaussian model, Exponential model, Pentaspherical model and Hole effect model. The objectives of this 

study are to: (i) compare and evaluate the most accurate interpolation method for soil properties, and (ii) generate the spatial distribution 

mapping for soil properties such as pH, Electrical Conductivity (EC), Total Nutrient (TN), potassium (K), Total Phosphorus (TP), Soil 

Organic Matter (SOM), Cation Exchange Capacity (CEC). Four indicator methods, including (Residual Sum of Squares (RSS), Root Mean 

Squared Error (RMSE), Mean deviation or Mean error (ME) and Average Kriging Standard Error (AKSE)) were used to evaluate the most 

accurate interpolation method. The log transformation chosen to estimate the direction or distribution of all parameters with the directional 

experimental semivariograms is 55o for all soil parameters. The nugget/sill ratio, RSS, and RMSE of Hole Effect model show the best 

statistical result than other models of OK interpolation method. And then, the soil properties (pH, EC, TN, K, TP, SOM, CEC) distribution 

mapping was plotted. These maps revealed the understanding of the soil quality in Chrey Bak Catchment. 
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1. INTRODUCTION1 

The suitability of the soil for plant growth depends 

heavily on its structural properties and the nutrient 

concentration of the soil solution. Soil variability in the field 

is generally defined with classic statistical methods and is 

assumed to have a random variability (Parkin, 1993). Soil 

variability occurs as a result of the effect and interaction of 

various processes in the soil profile. Soil characteristics 

generally show spatial dependence (Cemek et al., 2007). 

Regionally, the closed sampling points share the similarity 

of its characteristics. However, the classical statistics, 

assuming the measured data is independent, is not capable to 

analyze the spatial dependency of the variables (Vieria et al., 

1983).  

Spatial interpolation methods offer a mean of 

characterizing a variety of factors or responses over different 

spatial scales. Characterization over different spatial scales 

has proven invaluable for pest, crop and soil management, 

and soil properties mapping (Schloeder et al., 2001).  
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Interpolation of sampled points is widely used in the 

engineering field; it is both powerful and time-saving. Soil 

scientists considered that soil properties vary spatially and 

have strong fluctuations (Trangmar et al., 1986). 

Geostatistical interpolation techniques such as Kriging is 

based on statistics and is used for more advanced prediction 

surface modelling that also includes some measure of the 

certainty or accuracy of predictions. 

Geostatistical interpolation technique was used to 

analyze the spatial dependency of soil properties (Burgess & 

Webster, 1980). Numerous methods have been used for 

spatial prediction of soil properties.  There are several 

studies analyzing the accuracy of interpolation for numerous 

methods. (Kravchenko & Bullock, 1999) compared between 

Normal Ordinary Kriging and Lognormal Ordinary Kriging 

for soil properties (pH, EC, SOM, TN, TP, K, and CEC) 

from 58 experimental fields.  

The application of geostatistics is the prediction of 

attribute values at the unsampled location. Prediction is 

made possible by the existence of spatial dependence 

between observations as assessed by the correlogram or 

semivariogram. Modeling of the spatial distribution is a key 

step between description and prediction. The greater 

accessibility of geostatistical software has increased the risk 

http://www.ric.itc.edu.kh/
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that geostatistical tools are used without a good command of 

the underlying theory, in particular in the field of 

semivariogram modeling (Goovaerts, 1998).  

Moreover, in several situations, inappropriate or non-

optimal approaches are adopted because scientists are 

unaware of recent developments, such as factorial kriging, 

indicator geostatistics or stochastic simulation. In this study, 

semivariogram models were chosen such as Gaussian model, 

Exponential model, Pentaspherical model and Hole effect 

model. There are three parameters that are key features of a 

semivariogram model description, namely nugget, sill and 

range (Balasundram et al., 2008). 

Given the variability of results obtained by these 

previous studies the research reported hereafter aims to: 

● Assess the accuracy of various well-known interpolation 

techniques for mapping soil pH, electrical conductivity 

and organic matter through manipulation of the various 

parameters attributable to each technique; 

● Determine if non-spatial statistics could assist in 

determining the best interpolation method to implement 

without using exhaustive test parameters; and 

● Identify the spatial prediction method that best 

illustrates the spatial variability of the soil properties 

studied. This would enable the identification of areas 

where remediation is required to improve crop growth. 

2. METHODOLOGY 

2.1 Study Area 

This study was conducted in Stung Chrey Bak 

Catchment located in Kampong Chhnang province, 

Cambodia (Fig. 1).  

 

Fig.1. Geographic location of sampling points in Chrey Bak 

Catchment (UTM zone 48N coordinate system) 

Stung Chrey Bak catchment is one of the tributaries of 

the Tonle Sap River (Chem et al., 2011). Soil type was 

divided into six main types, including Lithosols, Alluvial, 

Ferrasols, Argic, Histosols, and Acrisols. Obviously, 55 

percent of the catchment area accounts as agricultural land, 

32 percent of the catchment area accounts as forestland and 

11 percent accounts as grassland (Oeurng et al., 2015). 

2.2 Soil sampling and measurement 

The field monitoring was conducted in October 2017 

and collected a total of 58 samples through random sampling 

from the whole study area. The selected samples at a depth 

of 0-20 cm were collected from 12-15 points of sub-soil 

from within a diameter of 30 m (Fig.2). Then the samples 

were well-mixed in a bucket. Additionally, the soil samples 

were air dry in the laboratory for seven days at room 

temperature and sieved (2mm) for texture analysis. Soil 

parameters pH, EC (μS/cm), SOM (mg/L), TP (mg/L), TN 

(mg/L), K (mmol/L), and CEC (cmol/Kg) were determined 

using standard soil analysis methods properly.   

       

Fig.2. Sub-soil collected for soil sampling 

Fig. 2 shows the elevation of the study area and 

sampling location. Due the difficulties to access the field, 

the samples were collected in the middle and downstream 

more than upstream. 

2.3 Exploratory data analysis 

This section describes the overall framework of the 

research. The first step is to apply the statistic method for 

geostatistical. The statistic method was applied to identify 

the most important transformation of data. The second step 

is to apply the semicariogram method that will find the best 

method for each parameter by used statistics between 

observe data with prediction data.  
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Fig. 3. Framework of Geostatistical Analysis 

2.4 Visualization and exploratory data analysis 

A technique applied and summarized the methods in a 

case study for spatial prediction and comparative evaluation 

of soil properties. The visual analysis by screening the data 

values to identify incorrect coordinate information and 

illogical data point. Data value description is achieved via 

basic summary statistics including means, medians, 

skewness, and Kurtosis (Robinson & Metternicht, 2006). 

2.4.1 Examining the distribution of data 

The different interpolation methods were tested to 

obtain the best result. To ensure a good result, two 

transformation distribution methods were used. Generally, 

the important features of the distribution are its central value, 

its spread, and its symmetry. Thus, it is important to 

understand the distribution (Johnston et al., 2001).    

There are two proposed hypotheses to compare different 

interpolation methods: 

● For normal distribution, there are symmetric around 

mean and median, both are equal. 

● The coefficient of skewness is a measure of the 

symmetry of a distribution. For a symmetric 

distribution, the coefficient of skewness is zero. If is 

defined formally from the third moment about the mean 

(Webster & Oliver, 2007): 

     
3N

i i

i=1

1
Skewness= z x -z x      Eq.1

N
 
   

If a distribution has a long right tail of large values, it is 

positively skewed, and if it has a long-left tail of small 

values, it is negatively skewed. The mean is larger than the 

median for positively skewed distributions and vice versa for 

negatively skewed distributions.  

● Kurtosis is based on the size of the tails of distribution 

and provides a measure of how likely the distribution 

will produce outliers. This obtained from the fourth 

moment about the mean: 

     
4N

i i

i=1

1
Kurtosis= z x -z x      Eq.2

N
 
   

2.5 Spatial prediction methods of Ordinary Kriging  

Kriging provides a solution to the condition of 

estimation predicted on a continuous model of stochastic 

spatial variation. It creates the best existing knowledge by 

taking account of the way that a property varies in space 

through the variogram model. Ordinary kriging is by 

significantly the most common type of kriging in practice 

(Webster & Oliver, 2007). The value of experimental 

variogram for a separation distance of h is half the average 

squared difference between the value at z(xi) and the value at 

z(xi+h) (Lark, 2000). The following approach used 

exploratory analysis including examining for normality and 

skewness, and the data changed when necessary. Isotropic 

experimental semivariogram was then constructed using the 

following equation: 

 
 

 
N(h)

2

i i

i=1

1
γ h = [z(x )-z(x +h)]      Eq.3

2N h
  

Where z(xi) and z(xi + h) represent pairs of observations 

separated by a distance h (or lag size), n is the number of 

data pairs and γ(h) is the semivariance. (Corstanje et al., 

2006). 

2.6 Variogram modeling 

In practice, the average squared distance was obtained 

for all pairs separated by a range of distances and these 

average squares differences were plotted against the average 

separation distance. A theoretical model might be fitted to 

the semivariogram, and the coefficient of this model could 

be used for kriging. In this study, four existing theoretical 

models were used as following: 
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● Gaussian model 

Other function with inverted curvature near the origin 

keeps coming in the geostatistical and software. For 

Gaussian model semivariogram expression is: 

   
2

2

h
γ h =C 1-exp -     Eq.4

L

  
   

  
 

Co is the nugget variance; C is the partial sill, and Co+C 

represents the amount of spatial variabsility. 

● Exponential model 

A function that is also much used in geostatistics is the 

negative exponential: 

   
h

γ h =C 1-exp -     Eq.5
L

  
  

  
 

Nevertheless, for practical purposes it is convenient to 

assign it an effective range, and this is usually taken as the 

distance at which γ(h) equals 95% of the sill variance, 

approximately 3L. Its slope at the origin is C/L (Webster & 

Oliver, 2007). 

● Pentaspherical model 

Matérn (1960), and McBratney & Webster (1986) 

extended the line of reasoning to obtain the five-dimensional 

analog of the above, the pentaspherical function: 

   

3 5
15h 5 h 3 h

C - +         for h L
γ h =     Eq.68L 4 L 8 L

               C                                for L h

     
     

      




 

It is useful in that is curve is somewhat more gradual than 

that of the spherical model. Its gradient at the origin is 

15c=8a. 

● Hole-Effect model 

For Hole-Effect model semivariogram expression is 

expressed by: 

   2 h h
γ h =σ 1- 1- exp -         Eq.7

L L

    
    

    
 

Where σ2>0 and L>0 and are two parameters. 

2.7 Criteria for comparison  

2.7.1 Residual sum of square (RSS) 

The residual sum of square is a measure of the 

discrepancy between the data and an estimation model. A 

small RSS indicates a tight fit of the model to the data. The 

RSS between experimental semivariance data and the model 

by optimizing the model parameter: nugget, still and range 

values. The RSS can be calculated using Eq. 8. 

   
2N

ii

i=1

RSS= z -z         Eq.8  

2.7.2 Criteria for comparison of cross-validation  

Cross-validation is attained by reducing information. 

Generally, one observation at the same time, estimating the 

value at that location with the rest of the data and then 

computing the difference between the actual and predicted 

value for each and every data location. The cross-validation 

approach is used to choose the best variogram model among 

the candidate model and also to search radius and lag 

distance that minimizes the kriging variance (Davis, 1987).  

One way of choosing between competing models is to 

use them for kriging and see how well they perform. Except 

in research studies, this would waste information, and 

validation is usually done by a process known as “cross-

validation” (Webster & Oliver, 2007). It works as follows: 

1. An experimental variogram is computed from the whole 

set of sample data, and plausible models are fitted to it. 

2. For each model, Z is estimated from the data and the 

model by kriging at each sampling point in turn after 

excluding the sample value there. The kriging variance 

is also calculated  

3. Three diagnostic statistics are calculated from the results 

To compare different interpolation techniques, the 

difference between the observed data and the predicted data 

of all 58 sample points were analyzed using: 

 Mean error or mean prediction error, ME, given by: 

 
i

N

i

i=1

1 ˆME = [Z(x ) - z(x )]        Eq.9
N
  

 Root-mean-square prediction errors,  

 
i

N
2

i

i=1

1 ˆRMSE = [Z(x ) - z(x )]         Eq.10
N
  

 Average kriging standard error, 

   
N

2

i

i=1

1
AKSE= σ x       Eq.11

N
  

Where iẐ(x ) is the predicted value from cross-validation, 

z(xi) is the observed (known) value, and N the number of 

values in the dataset (Johnston et al., 2001). 
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The mean error should ideally be zero if the 

interpolation method is unbiased. The calculated ME, 

however, is a weak diagnostic for kriging because it is 

insensitive to inaccuracies in the variogram. The value of 

ME also depends on the scale of the data. If the model for 

the variogram is accurate, then the variability is accurate, 

then the RMSE should equal the kriging variance, so the 

RMSE should equal 1.  

3. RESULTS AND DISCUSSION 

3.1 Comparative Statistics 

As a result, the skewness and kurtosis values of log 

transformation is smaller than a normal distribution (Table 

1). Therefore, the log transformation was chosen to estimate 

the direction or distribution of all parameters. The soil 

properties differed in spatial dependence, and the most fitted 

directional experimental semivariograms are 55o for all soil 

parameters. 

3.2 Comparison of Geostatistical Performance  

The Pentaspherical, exponential, Gaussian and Hole 

effect models were fitted to the experimental variogram, and 

the model with the lowest RSS was chosen as optimal 

(Robinson & Metternicht, 2006). The comparable RSS 

values in Table 2 indicate that the four models are 

comparable. From the RSS value, the maximum likelihood 

is calculated for each model. A Hole Effect model has a 

parameter that its residual sum of squares is lower than other 

parameters such as pH, EC, Total N, P, SOM, CEC, and K.   

The Pentaspherical, exponential, Gaussian and Hole 

effect models were fitted to the experimental variogram, and 

the model with the lowest RSS was chosen as optimal 

(Robinson & Metternicht, 2006). The comparable RSS 

values in Table 2 indicate that the four models are 

comparable. From the RSS value, the maximum likelihood 

is calculated for each model. A Hole Effect model has a 

parameter that its residual sum of squares is lower than other 

parameters such as pH, EC, Total N, P, SOM, CEC, and K.   

Soil properties differed in spatial dependence as shown 

in Fig.4. The predicted directional experimental 

semivariogram was fitted in the direction of 55o for each soil 

property. Table 2, shows the soil properties where variable 

characteristics were generated from the semivariogram 

model. The high ratio indicates that the spatial variability is 

primarily caused by stochastic factors, such as fertilization, 

farming measures, cropping systems, and other human 

activities. The lower ratio suggests that structural factors, 

such as climate, parent material, topography, soil properties, 

and other natural factors, play a significant role in spatial 

variability (Shit et al., 2016). The quantity of spatial 

autocorrelation was detailed by the ratio of nugget and sill, if 

it is smaller than 25%-75%, it indicates the system gets the 

medium spatial autocorrelation; if the ratio greater than 75% 

advised the weak spatial autocorrelation (Yang et al., 2008).  

In Table 2, the nugget/sill ratio calculated from Hole 

effect model for pH, TN, TP, K, and CEC parameters 

reached the best result which means it shows the strong 

correlation between each location of these parameters. 

According to results in Table 2, the Hole Effect model had 

the lowest RSS value for some parameters such as pH, EC, 

TN, SOM, TP, and K. On the other hand, SOM and CEC, its 

RSS by the Exponential model is greater than Hole Effect 

model. Otherwise, the RMSE of Hole Effect model produced 

a smaller value than Exponential (Table 2). To sum up, 

according to the overall statistical result of these four 

methods for all seven parameters, the Hole Effect model is 

the most fitted model of OK interpolation method which 

provided the best performance for generating the budget soil 

properties distribution map in the study area. 

Table 1. The result of skewness and kurtosis for seven parameters (the bold values represent the comparative statistic of 

skewness and kurtosis, the direction/distribution of all parameters is selected based on the small value of these indicators)

 
 

 

Parameters 
Normally Distribution Log transformation 

Comparison 
Mean Median Skew. Kur. Mean Median Skew. Kur. 

pH 6.19 6.00 1.06 3.96 1.81 1.79 0.84 3.43 Log trans. 

EC 22.89 11.7 4.86 30.18 2.69 2.46 1.18 4.44 Log trans. 

SOM 0.85 0.77 0.62 2.91 -0.35 -0.26 -1.41 5.59 Log trans. 

Total N 0.05 0.05 4.26 26.18 -3.05 -3.01 0.00 4.93 Log trans. 

P 2.83 2.24 1.57 4.44 0.75 0.80 0.34 2.32 Log trans. 

K 0.32 0.13 3.31 15.26 -1.86 -2.04 0.55 2.31 Log trans. 

CEC 6.16 4.70 1.72 5.89 1.60 1.54 0.26 2.64 Log trans. 
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Table 2. The result of statistical indicator comparison (the values in yellow and blue/green highlight represent the comparative 

statistic of EC and P for each geospatial model, respectively) 

 
Fig.4. Comparison map of Total N 

Model 
Soil 

parameters 
RSS Nug Sill Nug./Sill 

Error 

RMSE ME AKSE 

Pentaspherical 

pH 14.686 0.007 0.007 1.000 0.574 0.013 0.712 

EC 63979.782 0.524 0.524 1.000 35.019 2.793 4.209 

SOM 3.867 0.221 0.515 0.429 0.504 -0.044 0.738 

Total N 0.039 0.135 0.321 0.422 0.046 0.001 0.166 

P 290.436 0.508 0.508 1.000 2.431 0.016 1.552 

K 14.357 1.174 1.210 0.970 0.545 0.034 0.704 

CEC 922.844 0.359 0.434 0.827 4.781 -0.133 2.156 

Exponential 

pH 13.822 0.006 0.007 0.954 0.5653 0.002 0.712 

EC 63979.782 0.524 0.524 1.000 35.019 2.793 4.209 

SOM 2.366 0.172 0.525 0.328 0.508 -0.035 0.702 

Total N 0.064 0.193 0.321 0.602 0.047 0.001 0.178 

P 290.436 0.508 0.508 1.000 2.431 0.016 1.552 

K 14.264 1.195 1.207 0.990 0.542 0.034 0.706 

CEC 645.729 0.301 0.433 0.695 4.718 -0.011 2.104 

Gaussian 

pH 14.355 0.006 0.007 0.969 0.567 0.002 0.712 

EC 64645.303 0.510 0.529 0.965 35.281 2.513 4.220 

SOM 7.361 0.307 0.528 0.581 0.506 -0.053 0.782 

Total N 0.102 0.282 0.324 0.868 0.048 0.001 0.186 

P 284.349 0.500 0.510 0.981 2.400 0.050 1.537 

K 13.988 1.142 1.221 0.935 0.542 0.031 0.702 

CEC 849.497 0.350 0.433 0.808 4.7184 -0.010 2.146 

Hole Effect 

pH 9.821 0.005 0.007 0.800 0.571 0.004 0.707 

EC 63979.782 0.524 0.524 1.000 35.019 2.793 4.209 

SOM 6.224 0.278 0.499 0.557 0.485 -0.048 0.764 

Total N 0.027 0.112 0.317 0.353 0.048 0.001 0.159 

P 244.494 0.459 0.507 0.904 2.462 0.032 0.572 

K 7.764 0.744 1.204 0.618 0.541 0.017 0.682 

CEC 933.650 0.346 0.436 0.794 4.65 -0.035 2.103 
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Fig. 5. The map interpolation of Hole Effect: (a). CEC, (b). EC, (c). K, (d). P, (f). pH, (g). SOM, (h). Total N 
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4. CONCLUSIONS   

Understanding the spatial distribution and accurately 

mapping of soil properties at large scale is essential for 

precision farming, environmental monitoring, and 

modelling. This study showed that geostatistical model was 

an applicable soil interpolation method for all parameters, 

those are pH, EC, TN, K, TP, SOM, CEC. The OK 

interpolation methods are calculated for soil properties with 

four most commonly used mathematical models 

(Pentaspherical, Exponential, Gaussian and Hole Effect). 

The methods are evaluated using efficiency and error 

estimates of interpolation techniques. The efficiency is 

assessed by RSS, and errors are represented by the RMSE.  

The geostatistical performance of soil quality 

parameters showed that Hole Effect model has better 

performance than other models. The Hole effect model is 

more appropriate to parameters that follows structured 

spatial distribution due to lithology (like pH, CEC and 

probably EC, TN, TP and K in the second order). SOM can 

be more influenced by land use and follow different pattern. 

In addition, the Hole Effect model is better than another 

interpolation model in this study area with the log 

transformation. However, due to the field accessibility, the 

sample can be collected mostly in the rice field close to the 

road, which does not present the variability of the 

parameters. Therefore, it is recommended that the sampling 

point selection procedure should strictly follow the grid 

which was assigned.  
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