Latest Issue
The Negative Experiences of Low-Income Citizen Commute and Their Intentions Toward Public Bus in Phnom Penh
Published: December 31,2025Reliability Study on the Placement of Electric Vehicle Charging Stations in the Distribution Network of Cambodia
Published: December 31,2025Planning For Medium Voltage Distribution Systems Considering Economic And Reliability Aspects
Published: December 31,2025Security Management of Reputation Records in the Self-Sovereign Identity Network for the Trust Enhancement
Published: December 31,2025Effect of Enzyme on Physicochemical and Sensory Characteristics of Black Soy Sauce
Published: December 31,2025Activated Carbon Derived from Cassava Peels (Manihot esculenta) for the Removal of Diclofenac
Published: December 31,2025Impact of Smoking Materials on Smoked Fish Quality and Polycyclic Aromatic Hydrocarbon Contamination
Published: December 31,2025Estimation of rainfall and flooding with remotely-sensed spectral indices in the Mekong Delta region
Published: December 31,2025Using Cache to Optimize Question Wave Social Search Agents
-
1. Computer Science Department, Institute of Technology of Cambodia, BP 86, Bvd. Pochentong, Phnom Penh, Cambodia
Academic Editor:
Received: January 20,2024 / Revised: / Accepted: January 20,2024 / Available online: June 01,2013
This paper presents about our research in social search. Generally, the research in social search falls into two principal challenges. The first challenge is how to find more relevant answers to the question. The second one is how to increase speed in finding relevant answers. Recently, we had provided an algorithm called Question Waves (QW) to find more relevant answers compared to the baseline algorithmbreadth-first search(BFS). But, the search speed of the proposed algorithm still the subject to improve.In this paper, we introduce the agents’ ability of learning the answers from the interactions with other agents so that they can quickly answer the question of other agents. We model this learning process by implementing the concept of data caching as the short-term memory of each social search agent. The result improvement of the speediness and the reduction of the number of messages used to communicate between agents, after apply agent's short-term memory concept, demonstrates the usefulness of the proposed approach.
