Latest Issue
The Negative Experiences of Low-Income Citizen Commute and Their Intentions Toward Public Bus in Phnom Penh
Published: December 31,2025Reliability Study on the Placement of Electric Vehicle Charging Stations in the Distribution Network of Cambodia
Published: December 31,2025Planning For Medium Voltage Distribution Systems Considering Economic And Reliability Aspects
Published: December 31,2025Security Management of Reputation Records in the Self-Sovereign Identity Network for the Trust Enhancement
Published: December 31,2025Effect of Enzyme on Physicochemical and Sensory Characteristics of Black Soy Sauce
Published: December 31,2025Activated Carbon Derived from Cassava Peels (Manihot esculenta) for the Removal of Diclofenac
Published: December 31,2025Impact of Smoking Materials on Smoked Fish Quality and Polycyclic Aromatic Hydrocarbon Contamination
Published: December 31,2025Estimation of rainfall and flooding with remotely-sensed spectral indices in the Mekong Delta region
Published: December 31,2025Study on arsenic removal rate of combined process of coke-bed trickling filter and sedimentation
-
1. ITC
Academic Editor:
Received: January 22,2024 / Revised: / Accepted: January 22,2024 / Available online: June 01,2019
Arsenic contamination in groundwater has been recognized as a serious issue for health and environment because arsenic is a hazardous and toxic element; therefore, developing new technology is significant to remove arsenic from groundwater. Technology of arsenic removal has been in place through research to mitigate this problem, including aeration approach, Haix absorbent, precipitation, absorption process, and membrane technology. This study aims to evaluate and investigate new method of removing arsenic by applying the combined process of coke-bed trickling filter and sedimentation. One tubewell water from Koh Thom district, Kandal province, in Cambodia was chosen for the study. The concentration of total arsenic (As-T), arsenite-arsenic (As(III)), arsenate-arsenic (As(V)), pH, Mn, and Fe were analyzed. The combined process of coke-bed trickling filter and sedimentation was conducted with four different Phases (A, B, C, D). Phase A represents the flow rate of 1.0 L/day of pumping influent groundwater sample with aeration, and without introduction of iron. Phase B represents the flow rate of 1.0 L/day of influent sample with aeration and introduction of 25 mg/l of iron added. Phase C and D represents the flow rate 1.5 L/day and 2 L/day; respectively, of influent sample with aeration and introduction of 25 mg/l of iron added. The concentration of As-T was removed in Phase A by 29%. Whereas the concentration of As-T showed high effectively removal from 80 to 86% in Phase B, C and D. Specifically, the total concentration of As decreased from 356.25 μg/L to 48.75 μg/L, 108.75 to 21.625 μg/L, and 472.5 to 75 μg/L for Phase B, C, and D; respectively. In conclusion, this combined process could be an effective technique to remove As from groundwater.
