Latest Issue
Empowering Education with Online Khmer Handwritten Text Recognition for Teaching and Learning Assistance
Published: August 30,2025Undergraduate Student Dropout Prediction with Class Balancing Techniques
Published: August 30,2025Status of Seawater Quality at Koh Rong Island, Sihanoukville, Cambodia
Published: August 30,2025Low-Complexity Detection of Primary Synchronization Signal for 5G New Radio Terrestrial Cellular System
Published: August 30,2025Word Spotting on Khmer Printed Documents
Published: August 30,2025Tuning Hyperparameters Learning Rate and Gamma in Gym Environment Inverted Pendulum
Published: August 30,2025Examining Passenger Loyalty in Phnom Penh Public Bus System: A Structural Equation Modelling Approach
Published: August 30,2025Prediction on Load model for future load profile of Electric Vehicle charging demand in Phnom Penh
Published: August 30,2025Economic Study on Integrating PV-DG with Grid-Tie: Case Study in Cambodia
Published: August 30,2025Efficiency of Low Impact Development on Urban Stormwater in Phnom Penh Capital of Cambodia
-
1. Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
Received: March 15,2022 / Revised: / Accepted: November 15,2022 / Available online: June 30,2023
Cambodia is at an early stage of development, with 21% of people presently living in cities. Phnom Penh, the capital and largest city of Cambodia, is under urbanization pressure with a population of 2.1 million and the annual growth rate of 3.2% in 2019. In this regard, aging infrastructure needs an upgrade or replacement with a new design considering a percentage, as high as possible, of permeable surfaces in urban areas. Low Impact Development (LID), including green infrastructure, should be taken into account in planning and design approaches to mitigate land development impacts on the environment. This study aims to evaluate the efficiency of LID scenarios on surface runoff reduction, peak flow reduction, and pollutant removal under rainfall patterns using PCSWMM model in Boeng Trabek sewerage system, Phnom Penh. Flow monitoring and water quality sampling during three rainfall events were conducted in a main conduit for testing model performance. Six types of LIDs (Infiltration trenches, bioretention, porous pavements, rain garden, green roof, and rain barrels) were implemented in an applicable proportion of existing sub-catchments. For every selected rainfall event, LIDs could reduce in average 48% of surface runoff, 35% of peak flow and increase infiltration rate to 90%. For water quality (COD, NO3, PO4, and TSS), the average sub-catchment’s washoff removal and outlet’s total pollutant removal is 55%. In summary, the implementation of LIDs has a significant impact on runoff reduction, peak flow reduction, and pollutant removal. The results provide concrete evidence for relevant stakeholders to consider Low Impact Development technique for sustainable development and to achieve smart cities.