Latest Issue
The Negative Experiences of Low-Income Citizen Commute and Their Intentions Toward Public Bus in Phnom Penh
Published: December 31,2025Reliability Study on the Placement of Electric Vehicle Charging Stations in the Distribution Network of Cambodia
Published: December 31,2025Planning For Medium Voltage Distribution Systems Considering Economic And Reliability Aspects
Published: December 31,2025Security Management of Reputation Records in the Self-Sovereign Identity Network for the Trust Enhancement
Published: December 31,2025Effect of Enzyme on Physicochemical and Sensory Characteristics of Black Soy Sauce
Published: December 31,2025Activated Carbon Derived from Cassava Peels (Manihot esculenta) for the Removal of Diclofenac
Published: December 31,2025Impact of Smoking Materials on Smoked Fish Quality and Polycyclic Aromatic Hydrocarbon Contamination
Published: December 31,2025Estimation of rainfall and flooding with remotely-sensed spectral indices in the Mekong Delta region
Published: December 31,2025Pose Estimation for Differential Drive Mobile Robot Using Multi-Sensor Data Fusion
-
1. ITC
Academic Editor:
Received: January 22,2024 / Revised: / Accepted: January 22,2024 / Available online: June 01,2020
The robot localization is a crucial task that needs to be solved as a part of the navigation problem for an autonomous robot. In order to estimate the location of a robot in the environment, various sensors are used to extract meaningful information from measurements to acquire knowledge about the robot’s environment and motion. Due to the fact that the sensor uncertainty is random, it is impossible to find an accurate pose for the robot by only one senso,r and the accuracy of any sensor is generally related to its price. Sensor fusion technique is a well•known approach to give the best estimate robot location and how certain it is by combining data from two or more inexpensive sensors. In this paper, the estimation of the robot’s new pose given the previous pose and error-accumulated odometry is proposed based on the fusion of data from wheel encoders and the Inertial Measurement Unit (IMU) for a differential drive mobile robot. The robot has a very simple driving mechanism that is quite often used in practice, especially for service mobile robots. The required mathematical models of the robot and indoor localization system are derived. The mathematical tool for sensor fusion is the Kalman filter which provides the optimal estimate of the system state, and robot configuration, assuming that the noise from each sensor is zero•mean and Gaussian. The robot was driven in two different cases; circular trajectory and square trajectory to evaluate the performance and consistency of the robot localization. The experimental result shows the effectiveness of the proposed work for the robot’s pose estimation.
