Latest Issue
Effect of Different Irrigation Methods on Water Use Efficiency in Rice Soil Column Test
Published: April 30,2025Optimization of Extraction Condition for Oleoresin from Red Pepper Residues
Published: April 30,2025Bus Arrival Time Prediction Using Machine Learning Approaches
Published: April 30,2025A Deep Learning Approach for Identifying Individuals Based on Their Handwriting
Published: April 30,2025Khmer Question-Answering Model by Fine-tuning Pre-trained Model
Published: April 30,2025CNN-based Reinforcement Learning with Policy Gradient for Khmer Chess
Published: April 30,2025Attitude Estimation by using Unscented Kalman Filter with Constraint State
-
1. Department of Industrial and Mechanical Engineering, Dynamics and Control Laboratory, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia.
Academic Editor:
Received: September 15,2022 / Revised: / Accepted: December 30,2022 / Available online: December 31,2023
Quadcopters or quadrotors have always desired to fly smoothly and stay on their path in order to enhance their application. This better performance can be achieved depending on the accuracy of the data. However, relying purely on sensor data cannot be accepted due to the inaccuracy of measurement, thus state estimation to filter noise out is important. This paper is focused on performance evaluation on quadrotors attitude estimation using Unscented Kalman filter (UKF) by comparison with quadrotors attitude computed from the mathematical model. The UKF is an algorithm dealing with noise filters that can be used for state estimation such as attitude and bias of sensors. UKF is divided into two steps which are Measurement Update, and Time Update. However, the algorithm is initialized by determining initially on the mean and the covariance. Then, the measurement update algorithm uses the accelerometer sensor data and magnetometer sensor data pose the next time update. Gaussian with covariance (Q and R) of the UKF algorithm are determined in this paper. Quaternion is used to describe state equations which are based on the kinematic model. The input of the state equation is taken from sensors of the Pixhawk 4 controller which are gyrometers (data of angular velocity). In addition, the output equation is based on accelerometer modeling and magnetometer modeling including data from accelerometer sensors and magnetometer in the Pixhawk 4 controller. MATLAB & Simulink have been used for this experiment and Pixhawk Controller hardware is used as the flight controller. The result of attitude estimation expressed about component of quaternions and bias of sensor from Pixhawk 4. The graph is shown the performance of attitude quadrotors and bias of sensor.