Latest Issue
Empowering Education with Online Khmer Handwritten Text Recognition for Teaching and Learning Assistance
Published: August 30,2025Undergraduate Student Dropout Prediction with Class Balancing Techniques
Published: August 30,2025Status of Seawater Quality at Koh Rong Island, Sihanoukville, Cambodia
Published: August 30,2025Low-Complexity Detection of Primary Synchronization Signal for 5G New Radio Terrestrial Cellular System
Published: August 30,2025Word Spotting on Khmer Printed Documents
Published: August 30,2025Tuning Hyperparameters Learning Rate and Gamma in Gym Environment Inverted Pendulum
Published: August 30,2025Examining Passenger Loyalty in Phnom Penh Public Bus System: A Structural Equation Modelling Approach
Published: August 30,2025Prediction on Load model for future load profile of Electric Vehicle charging demand in Phnom Penh
Published: August 30,2025Economic Study on Integrating PV-DG with Grid-Tie: Case Study in Cambodia
Published: August 30,2025Crop Disease Dataset and Recognition using Convolutional Neural Networks
-
1. Department of Information and Communication Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
Received: August 26,2022 / Revised: / Accepted: April 20,2022 / Available online: June 30,2023
Crop diseases, unfavorable growth, and nutritional deficiencies have a significant impact on the quality and quantity of agricultural income. According to the United Nations’ Food and Agriculture Organization, it is estimated that pre- and post-harvest diseases alone destroy at least 20–40% of global agricultural production. In developing countries like Cambodia, farmers tend to have a limited understanding of crop diseases and how to treat them, therefore AI solutions can assist farmers in detecting crop irregularities and diseases, which are now lacking in the agricultural sector. With the advancement and developments in AI Deep Learning Algorithms, this paper focuses on how disease dataset was collected and generated, as well as experimenting with four CNN models to detect and recognize the disease name across thirteen disease classes and evaluate the model performance such as accuracy, confusion matrix and computing resource consumptions that operate best with this dataset and can be integrated into mobile phone applications and microprocessor devices. The result of this research is a labeled crop disease dataset and experimental results, this dataset can achieve highest accuracy of 89.210%, 90.558%, 92.100%, 91.136% for InceptionV3, InceptionResNetV2, MobileNetV2 and EfficientNetB0, respectively.