Latest Issue
Empowering Education with Online Khmer Handwritten Text Recognition for Teaching and Learning Assistance
Published: August 30,2025Undergraduate Student Dropout Prediction with Class Balancing Techniques
Published: August 30,2025Status of Seawater Quality at Koh Rong Island, Sihanoukville, Cambodia
Published: August 30,2025Low-Complexity Detection of Primary Synchronization Signal for 5G New Radio Terrestrial Cellular System
Published: August 30,2025Word Spotting on Khmer Printed Documents
Published: August 30,2025Tuning Hyperparameters Learning Rate and Gamma in Gym Environment Inverted Pendulum
Published: August 30,2025Examining Passenger Loyalty in Phnom Penh Public Bus System: A Structural Equation Modelling Approach
Published: August 30,2025Prediction on Load model for future load profile of Electric Vehicle charging demand in Phnom Penh
Published: August 30,2025Economic Study on Integrating PV-DG with Grid-Tie: Case Study in Cambodia
Published: August 30,2025Development of Control Framework Based on ROS Platform for a 3-Axis Gimbal
-
1. Dynamics and Control Laboratory, Department of Industrial and Mechanical Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
Academic Editor:
Received: October 06,2023 / Revised: / Accepted: July 07,2023 / Available online: December 31,2023
A Gimbal is a type of instrument used for 3D space orientation control. Over the past decade of research on 3-axis tracking gimbal, many research have been contributing to design and control of the system improving the accuracy and quality of the design.This research aims to develop a control framework for the system making it more user-friendly and more convenient for nondevelopers to use the final product. More specifically, this research focuses on system integration, controller design & simulation. We describe kinematic modeling before properly implementing controllers for velocity control and position control to reach desired pose of the end-effector. To validate a proper controller for suitable use, the simulation of the kinematics and motion control has been performed. We propose a study of 2 possible controllers, that is, conventional PI controller for velocity control and PD controller for position control of the actuators. ROS2 nodes are developed and used as a middleware for interfacing the motion control and command signal sent from another application. Two devices with different platform are used to communicate and send data to each other over the ROS framwork. One device is used to command the desired pose of the gimbal and visualize the response of the the system. The other device is used for computing feedback control of the system based on kinematics equation. The simulation result in this work is also presented for validation of this framework. Finally, we have found the simulation result of control system of gimbal start to converge to desired pose commanded from another device over the ROS framework that we have created.