Latest Issue
The Negative Experiences of Low-Income Citizen Commute and Their Intentions Toward Public Bus in Phnom Penh
Published: December 31,2025Reliability Study on the Placement of Electric Vehicle Charging Stations in the Distribution Network of Cambodia
Published: December 31,2025Planning For Medium Voltage Distribution Systems Considering Economic And Reliability Aspects
Published: December 31,2025Security Management of Reputation Records in the Self-Sovereign Identity Network for the Trust Enhancement
Published: December 31,2025Effect of Enzyme on Physicochemical and Sensory Characteristics of Black Soy Sauce
Published: December 31,2025Activated Carbon Derived from Cassava Peels (Manihot esculenta) for the Removal of Diclofenac
Published: December 31,2025Impact of Smoking Materials on Smoked Fish Quality and Polycyclic Aromatic Hydrocarbon Contamination
Published: December 31,2025Estimation of rainfall and flooding with remotely-sensed spectral indices in the Mekong Delta region
Published: December 31,2025Efficiency of Low Impact Development on Urban Stormwater in Phnom Penh Capital of Cambodia
-
1. Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
Received: March 15,2022 / Revised: / Accepted: November 15,2022 / Available online: June 30,2023
Cambodia is at an early stage of development, with 21% of people presently living in cities. Phnom Penh, the capital and largest city of Cambodia, is under urbanization pressure with a population of 2.1 million and the annual growth rate of 3.2% in 2019. In this regard, aging infrastructure needs an upgrade or replacement with a new design considering a percentage, as high as possible, of permeable surfaces in urban areas. Low Impact Development (LID), including green infrastructure, should be taken into account in planning and design approaches to mitigate land development impacts on the environment. This study aims to evaluate the efficiency of LID scenarios on surface runoff reduction, peak flow reduction, and pollutant removal under rainfall patterns using PCSWMM model in Boeng Trabek sewerage system, Phnom Penh. Flow monitoring and water quality sampling during three rainfall events were conducted in a main conduit for testing model performance. Six types of LIDs (Infiltration trenches, bioretention, porous pavements, rain garden, green roof, and rain barrels) were implemented in an applicable proportion of existing sub-catchments. For every selected rainfall event, LIDs could reduce in average 48% of surface runoff, 35% of peak flow and increase infiltration rate to 90%. For water quality (COD, NO3, PO4, and TSS), the average sub-catchment’s washoff removal and outlet’s total pollutant removal is 55%. In summary, the implementation of LIDs has a significant impact on runoff reduction, peak flow reduction, and pollutant removal. The results provide concrete evidence for relevant stakeholders to consider Low Impact Development technique for sustainable development and to achieve smart cities.
